Optical: systems and elements – Single channel simultaneously to or from plural channels – By surface composed of lenticular elements
Reexamination Certificate
2002-04-10
2004-03-23
Ben, Loha (Department: 2873)
Optical: systems and elements
Single channel simultaneously to or from plural channels
By surface composed of lenticular elements
C359S619000, C359S708000, C359S710000
Reexamination Certificate
active
06710926
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to microlenses. More specifically, the present invention relates to cylindrical microlenses for use with laser diodes, laser diode bars, and integrated optics.
2. Description of Related Art
A lens is an optical element that can focus or de-focus electromagnetic radiation (i.e., light). The most common types of lenses are spherical; for example, a circular convex lens focuses light to a point. Such lenses are useful in many applications such as imaging, photolithography, and metrology. The common spherical lens has a shape that is symmetric about an optic axis.
Another lens that is important is a cylindrical lens. A cylindrical converging lens focuses light along a line, typically termed the “line focus.” The typical cylindrical lens is shaped symmetrically around a principal axis, which is orthogonal to the optic axis. For example, a cylindrical lens may have the shape of a cylinder, with circular dimensions around a central axis. Light is made incident on a first curved surface of the cylinder, and exits from the other second curved side of the cylinder.
For many applications, a circular cross-section is undesirable, and therefore, the curves of cylindrical lenses may require specific shapes that differ from the circular curve of the previous example. The required shape may be flat or it could be some other non-circular curve such as an ellipse of hyperbola. In other words, cylindrical lenses may be formed with a variety of curved surfaces. The exact shape is highly dependent upon the application. For example, laser diodes and similar types of architecture have different divergence angles along orthogonal axis due to their rectangular shaped output apertures. Because of this characteristic, a cylindrical lens can be shaped to collimate the fast axis (i.e., the fast divergent axis) of a laser diode by matching the divergence of the slow axis (i.e., the slow divergence axis). One method for creating cylindrical lenses with selected shapes is described and claimed in U.S. Pat. No. 5,080,706 issued Jan. 14, 1992 and U.S. Pat. No. 5,081,639 issued Jan. 14, 1992, each issued to Snyder et al., and assigned to the assignee of the instant application. In addition, the method for creating cylindrical lenses with selected shapes is described in “Fast diffraction-limited cylindrical microlenses,” by Snyder et al., Applied Optics Vol. 30, pp. 2743-2747, 1991.
Cylindrical microlenses shaped for a specific application are utilized for integrated optics and optically conditioning radiation of laser diode bars. In recent years, the ability to package and to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Government research and development in this area has created improvements in this technology in an effort to supply large radiance conditioned laser diode array sources for its own internal programs as well as for industrial applications.
Original efforts on the development of modular integrated laser diode packaging technology is described in “Applications of Micro-lens-Conditioned Laser Diode arrays,” by R. J. Beach et al., SPIE Vol. 2383, p 283, 1995 and in U.S. Pat. No. 5,105,429 issued Aug. 14, 1992 to Mundinger et al. Recently, advances beyond the original rack and stack technologies in which typically only a single laser diode bar was attached to a single high performance heat sink have enabled monolithic laser diode packages in which multiple diode bars are attached to a single high performance heat sink. This technology advance has led to larger laser diode arrays and larger diode-pumped laser systems. One type of monolithic package is manufactured from silicon substrates and uses microchannels fabricated directly into the silicon to aggressively remove the waste heat that is generated by diode bars that are attached to the silicon. This type of package, which utilizes Silicon Monolithic Microchannels (i.e., SiMM) was originally intended for high average power applications. There is also a low duty factor package, which is closely related to the SiMM package, but does not incorporate microchannels in the silicon. This package is known as V-BASIS, and except for the lack of microchannels, is very similar to the SiMM package in its structure. Basically, the SiMM package retains many of the same basic features of the original rack and stack package, but engages a higher level of integration with multiple diode bars attached to a single based chip carrier. Such approaches are described and claimed in U.S. Pat. No. 5,548,605 issued Aug. 20, 1996 to Benett et al., U.S. Pat. No. 5,828,683 issued Oct. 27, 1998 to Freitas, and U.S. Pat. No. 5,923,481 issued Jul. 13, 1999 to Skidmore et al., and assigned to the assignee of the instant application.
Both the SiMM package and the V-BASIS package have been remarkably successful in building very large laser diode arrays. However, a major problem remains with conventional optical conditioning of the radiation emitted by laser diode bars attached to these packages if conventional microlenses are used. The problem is associated with the V-grooves in which the laser diode bars are attached. Due to the orientation of the V-grooves, the radiation emitted by laser diodes that are attached to them is directed away from the normal to the face of the package. In some instances, this off-normal directed emission is an aspect of the package that can be overcome by suitably orienting the package to compensate for the off-normal emission direction. In other instances, it is required that the conditioned light be emitted from the package in a direction along the normal to the face of the package. The V-grooves result from the etching process used in their fabrication. In addition to the formation of V-grooves for positioning and mounting laser diode bars, the same V-groove technology is used to fabricate microchannels into the silicon substrate. Anistropic etching of silicon takes advantage of the fact that some chemicals, e.g., potassium hydroxide, etch crystal planes of different orientations at different rates. In <110> oriented wafers, (the surface of the wafer is a <110> plane), etch rate differences can be exploited to etch channels that are perpendicular to the surface of the wafer. This is accomplished by creating a mask on the surface of the wafer that is aligned with the <111> planes on the wafer. When etched, these slow-etching, perpendicular <111> planes then become the walls of the channels. With the appropriate angular orientation of an etch mask on a <110> oriented silicon wafer, the result of the above etching method is to produce V-grooves wherein laser emitting diodes or laser diode bars are attached to the slanted surfaces, i.e., the <111> plane, and as such are oriented in a very specific way relative to the <110> normal direction.
Accordingly, in addition to performing the required lens collimation task, the present invention provides a cylindrical microlens for deviating the off-normal optical rays to enable emission which is normal to the plane of the array. In addition, the present invention can be incorporated into high average power, high density, two-dimensional arrays to solve a need in industry and research environments for optical conditioning of these devices.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a lens, which includes an internally reflecting surface, which functions to deviate the direction of light that enters the lens from its original propagation direction while providing a collimated output.
Another aspect of the present invention is to provide a laser diode apparatus whereby a fast (high numerical aperture) cylindrical microlens conditions the output from a laser diode and deviates emission from the laser diode from its original direction in such a way that the laser diode emission is directed normal to a diode array pla
Beach Raymond J.
Freitas Barry L.
Ben Loha
Dinh Jack
Staggs Michael C.
The Regents of the University of California
Thompson Alan H.
LandOfFree
Cylindrical microlens with an internally reflecting surface... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cylindrical microlens with an internally reflecting surface..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cylindrical microlens with an internally reflecting surface... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3244535