Brushing – scrubbing – and general cleaning – Machines – Brushing
Reexamination Certificate
2001-05-09
2004-10-12
Spisich, Mark (Department: 1744)
Brushing, scrubbing, and general cleaning
Machines
Brushing
C015S082000, C015S368000
Reexamination Certificate
active
06802098
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a cylindrical brush alignment device, particularly for use in association with a surface maintenance vehicle.
BACKGROUND OF THE INVENTION
Surface maintenance vehicles and cleaning devices have a long history subject to gradual innovation and improvement toward improved and oftentimes automated performance in removing debris and contamination from floors and other surfaces to be cleaned. These vehicles and devices may be self-powered, towed, or pushed, and/or manually powered and may carry a human operator during cleaning operations. Such vehicles and devices include scrubbers, extractors, sweepers and vacuums, as well as combinations thereof, intended for cleaning, scrubbing, wiping and/or drying a portion of a substantially flat surface both indoors and outdoors. Many such vehicles and devices employ one or more rotating brushes for sweeping debris from a floor and/or, in conjunction solution of water and a detergent, providing scrubbing action via one or more of the rotating brushes. The brush assembly of such prior art cleaning vehicles may mount to the vehicle at any convenient location. However, due consideration of potential cooperation and/or synergy with other cleaning apparatus used by the surface maintenance vehicle typically dictates that the brush assembly couples at or near the middle or front portion of the vehicle. Cleaning solution(s) may be pumped or sprayed via traditional means to the surface near the rotary scrub brushes operating from a lower portion of the vehicle. Some of the rotary scrub brushes may have a substantially vertical axis of rotation and others may have a substantially horizontal axis of rotation. The configuration between a pair or set of these rotary scrub brushes are generally spaced apart so as to cooperate toward the collection and removal of particles and debris from the surface using consistent contact with the surface to be cleaned and the bristle ends of each of said rotary brushes. The length of the cylindrical brushes are often sufficiently wide to at least cover the path width of the wheels of the cleaning vehicle.
Floor scrubbing vehicles are widely used to clean the floors of industrial and commercial buildings. They range in size from a small model which may clean a path ranging from perhaps 15 inches up to 36 inches wide controlled by an operator walking behind it, to a large model cleaning a path as wide as five feet controlled by an operator riding on the machine. In general, these machines have a wheeled chassis which contains, in addition to power and traction drive means, a tank to hold clean scrubbing solution and a vessel to hold debris recovered from the surface being scrubbed. A scrub head is attached to the chassis by an articulated linkage system, and may be located in front of, under or behind the chassis. The scrub head contains one or more rotating scrub brushes and means to power them. These brushes may be either flat disc brushes that rotate about vertical axes or they may be cylindrical brushes rotating about horizontal axes. Both systems have their advantages and disadvantages, and both are widely used. An early example of such a surface maintenance device includes U.S. Pat. No. 3,702,488, which is incorporated by reference herein.
In addition, rotating cylindrical brush assembly and related drive and support structures for cleaning vehicles have been known and used in the art, such as that disclosed in U.S. Pat. No. 5,515,568 assigned to Tennant Company of Golden Valley, Minn. U.S.A. which issued on May 14, 1996 to Larson et al. and the contents of which are incorporated by reference herein, and U.S. Pat. No. 6,035,479 also assigned to Tennant Company, which issued on Mar. 14, 2000 to Basham et al. the contents of which are incorporated by reference herein. In these prior art references, a brush assembly includes a mounting plate mechanically connected to the brush assembly via many individual traditional threaded shank members and corresponding washers and threaded nuts and the like to firmly couple a brush assembly to the cleaning vehicle. The resulting metal-on-metal contact between the bolts, slots, washers and nuts provides a compression force of sufficient magnitude to ensure that the rotating brush assembly attachment cannot separate from the vehicle, but mainly depends upon the degree of tightening of individual bolts between diverse subcomponents of the assembly. In the event a brush requires taper adjustment, presumably each nut and bolt pair and other connecting components must be loosened and/or completed removed (and accounted for) and/or complete removal of at least one end of the brush assembly from its respective rotational mounting location. In addition, associated drive motor and motor coupling members may require time consuming partial disassembly and/or removal with possible risk of lost of parts.
If the operator is unable to release any of the connecting components or is unable to adequately tighten same, the operator may have to temporarily depart the facility being cleaned unless and until same may be rectified. If in fact the connecting components are overly loose, the brush assembly may disengage from the surface maintenance vehicle during cleaning operations with dire results for the facility, the surface being cleaned, the vehicle and perhaps even the operator of the vehicle with additional downtime, repair efforts, and/or adjustment resulting as a direct consequence.
Accordingly, the recited prior art approach as well a many other known assemblies rely on manually developed force between several opposing surfaces at diverse locations using conventional hardware. Unfortunately, as in the reference immediately above, the compressive forces required to fully assemble such prior art rotary brush assemblies are typically not susceptible of manual tightening of a knob or wing nut. Instead, diverse tools, both manually operated and independently powered, must be applied to each connecting subcomponent first during partial (or complete) disassembly of the subcomponent, during adjustment of the brush taper by adjusting the entire brush assembly relative to the vehicle and/or the surface to be cleaned, and later during re-attachment of each connecting subcomponent. Finally, such prior art approaches must be field tested to confirm that the adjustment to the brush taper effectively improved the sweeping operation of the surface maintenance vehicle. If not, then the entire procedure (i.e., partial/complete disassembly of each subcomponent, adjustment of the brush assembly relative to the vehicle and/or surface to be cleaned, and during re-attachment of each connecting subcomponent) must be performed again, perhaps repeatedly, until such adjustment is deemed adequate following field testing.
SUMMARY OF THE PRESENT INVENTION
The invention herein is primarily concerned with scrubbers that use two counter-rotating cylindrical brushes. The brushes are preferably set parallel to each other and are closely spaced, with their axes of rotation being horizontal and generally transverse to a longitudinal axis relative to the intended direction of travel of the vehicle. A major advantage of this configuration is that the cylindrical brushes, while scrubbing the floor, act cooperatively to also sweep up small particles and debris that may be on the surface being scrubbed and deposit them in a debris tray or other receptacle or vessel. Cylindrical brush mounting assemblies used on such vehicles may include alignment devices for adjusting the relative orientation of the brushes. These brush alignment devices are necessary to adjust the brush into equal ground contact along its longitudinal length. Known brush alignment procedures have typically required at least partial disassembly of the brush assembly from the maintenance vehicle, an inefficient adjustment procedure briefly described above and requiring a vehicle operator to halt cleaning operations, apply diverse tools to uncouple connecting parts of the brush assembly from the vehicle and the
Geyer Robert A.
Hamline Anthony J.
Fulbright & Jaworski L.L.P.
Spisich Mark
Tennant Company
LandOfFree
Cylindrical brush idler-side taper adjustment assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cylindrical brush idler-side taper adjustment assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cylindrical brush idler-side taper adjustment assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3327619