Measuring and testing – Vibration – Acoustic levitation
Reexamination Certificate
2002-09-13
2003-11-11
Williams, Hezron (Department: 2856)
Measuring and testing
Vibration
Acoustic levitation
C073S432100, C210S748080
Reexamination Certificate
active
06644118
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to acoustic levitation and concentration and, more particularly, to the use of a hollow, oblate piezoelectric crystal for levitation and concentration which requires only low power and obviates the need for exact alignment of parts to generate standing waves.
BACKGROUND OF THE INVENTION
Acoustic levitation provides a means for isolating small samples of particles having diameters less than several millimeters without the influence of a containment vessel (See, e.g., E. H. Trinh, “Compact Acoustic Levitation Device For Studies In Fluid Dynamics And Material Science In The Laboratory And Microgravity” Rev. Sci. Instrum. 56, 2059-2065 (1985), D. B. Thiessen and P. L. Marston, “Principles Of Some Acoustical, Electrical, And Optical Manipulation Methods With Applications To Drops, Bubbles, And Capillary Bridges” ASME Fluids Eng. Div. Publ. FED (1998), M. A. H. Weiser and R. E. Apfel, “Extension Of Acoustic Levitation To Include The Study Of Micron-Size Particles In A More Compressible Host Liquid” J. Acoust. Soc. Am. 71, 1261-1268 (1982), E. G. Lierke et al., “Acoustic Positioning For Space Processing Of Materials Science Samples In Mirror Furnaces” in IEEE Ultrasonics Symposium 1129-1139 (1983), K. Yasuda, “Blood Concentration By Superposition Of Higher Harmonics Of Ultrasound” Jpn. J. Appl. Phys. 36, 3130-3135 (1997), Ph. Caperan et al., “Acoustic Agglomeration Of A Glycol For Aerosol: Influence Of Particle Concentration And Intensity Of The Sound Field At Two Frequencies” J. Aerosol Sci. 26, 595-612 (1995), G. Whitworth et al., “Transport And Harvesting Of Suspended Particles Using Modulated Ultrasound” Ultrasonics 29, 439-444 (1991), and K. M. Martin and O. A. Ezekoye, “Acoustic Filtration And Sedimentation Of Soot Particles” Experiments in Fluids 23, 483-488 (1997)). Most acoustic levitation devices operate by localizing a sample near the nodal planes of an acoustic standing wave. This has proven to be a viable technique for measuring material properties of small sample quantities (e.g. droplets, aerosols, etc.) without obscuring the results with the effects of a mounting apparatus (See, e.g., M. A. H. Weiser and R. E. Apfel, supra, and E. G. Lierke et al., supra). Other applications include the use of acoustic forces to concentrate aerosols and/or particulates near the nodal planes of the field for harvesting or sedimentation purposes. Advances in the design of acoustic levitators over the past several decades have proven useful for applications where samples may reside in either gaseous or liquid host media.
The standing-wave field produced by an acoustic levitation device is strongly dependent upon the spatial alignment of the system components and often requires moderate to high electrical input power levels to drive the acoustic generators and achieve the desired levitation. This is especially true for levitating solid and liquid samples in air. The large acoustic impedance mismatch between the displacement-generating device and the air medium is often a difficult problem to overcome. Resonant transduction devices having Q>1000 have been built to address this problem and have proven quite useful when electrical power efficiency is not a limiting factor (See, e.g., D. B. Thiessen and P. L. Marston, supra, and J. A. Gallego Juarez and G. Rodriguez Corral “Piezoelectric Transducer For Air-Borne Ultrasound” Acustica 29, 234-239 (1973)).
Piezoelectric cylinders have received significant attention by industry. Such crystals are used for vibration damping, sources for sonar, sensors and actuators, motors and X-Y micropositioners, to name several uses.
Accordingly, it is an object of the present invention to provide an apparatus for efficiently achieving acoustic levitation and concentration which in its simplest embodiment is free from the requirement of careful alignment of its component members.
Various advantages and novel features of the invention will be set forth, in part, in the description that follows, and, in part, will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
In accordance with the present invention, particles suspended or entrained in a fluid are concentrated. A cylindrical piezoelectric transducer is provided with an interior cylindrical cavity having a surface defining an axis and having a resonance frequency matched to the breathing mode frequency of the transducer. The interior cylindrical cavity surface is deformed from a circular cross-section such that applying a periodic electrical excitation to the cylindrical piezoelectric transducer generates resonant acoustic waves within the interior cylindrical cavity to form localized force concentration regions of acoustic force parallel to the axis of the cavity surface. The fluid having particles suspended or entrained therein is subjected to the localized force concentration regions such that the particles move to the localized force concentration regions and are concentrated therein.
In another aspect of the present invention, an apparatus concentrates particles suspended or entrained in a fluid. A cylindrical piezoelectric transducer has an interior cavity having a surface defining an axis, wherein the interior cavity has an acoustic resonance that is matched to a breathing-mode acoustic resonance of the cylindrical piezoelectric transducer when the interior portion is filled with the fluid. A function generator is connected to apply periodic electrical excitation to the cylindrical piezoelectric transducer such that resonant acoustic waves are generated in the interior cavity and form regions of concentrated acoustic force, where the interior cavity surface is deformed from a circular cross-section so that the regions of concentrated acoustic force are axial regions parallel to the axis of the interior cavity. An input system introduces the fluid having suspended or entrained particles adjacent the regions of concentrated acoustic force formed by the resonant acoustic waves such that the particles move to the regions and are concentrated therein.
REFERENCES:
patent: 3882732 (1975-05-01), Fletcher et al.
patent: 4523682 (1985-06-01), Barmatz et al.
patent: 4604542 (1986-08-01), Thompson
patent: 4777823 (1988-10-01), Barmatz et al.
patent: 4964303 (1990-10-01), Barmatz et al.
patent: 5831166 (1998-11-01), Kozuka et al.
patent: 6055859 (2000-05-01), Kozuka et al.
patent: 6216538 (2001-04-01), Yasuda et al.
patent: 6467350 (2002-10-01), Kaduchak et al.
patent: 2002/0121285 (2002-09-01), Poniatowski et al.
patent: 2002/0162393 (2002-11-01), Kaduchak et al.
E. H. Trinh, “Compact Acoustic Levitation Device For Studies In Fluid Dynamics And Material Science In The Laboratory And Microgravity” Rev. Sci. Instrum. 56, 2059-2065 (1985).
D. B. Thiessen and P. L. Marston, “Principles Of Some Acoustical, Electrical, And Optical Manipulation Methods With Applications To Drops, Bubbles, And Capillary Bridges” ASME Fluids Eng. Div. Publ. FED (1998).
M.A.H. Weiser and R. E. Apfel, “Extension Of Acoustic Levitation To Include The Study Of Micron-Size Particles In A More Compressible Host Liquid” J. Acoust. Soc. Am. 71, 1261-1268 (1982).
E.G. Lierke et al., “Acoustic Positioning For Space Processing Of Materials Science Samples In Mirror Furnaces” in IEEE Ultrasonics Symposium 1129-1139 (1983).
K. Yasuda, “Blood Concentration by Superposition Of Higher Harmonics Of Ultrasound” Jpn. J. Appl. Phys. 36, 3130-3135 (1997).
P. Caperan et al., “Acoustic Agglomeration Of A Glycol For Aerosol: Influence Of Particle Concentration And Intensity Of The Sound Field At Two Frequencies” J. Aerosol Sci. 26, 595-612 (1995).
G. Whitworth et al., “Transport And Harvesting Of Suspended Particles Using Modulated Ultrasound” Ultrasonics 29, 439-444 (1991).
K.M. Martin and O.A. Ezekoye, “Acoustic Filtration An
Kaduchak Gregory
Sinha Dipen N.
Miller Rose M.
The Regents of the University of California
Wilson Ray G.
LandOfFree
Cylindrical acoustic levitator/concentrator having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cylindrical acoustic levitator/concentrator having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cylindrical acoustic levitator/concentrator having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3162343