Cycolalkylated B-glucoside

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S018600, C435S200000, C504S121000

Reexamination Certificate

active

06372894

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a cycloalkyl &bgr;-glucoside, a &bgr;-glucosidase inhibitor, an aromatic substance formation inhibitor that inhibits the formation of plant aromatic substance, and a plant or a part thereof in which the formation of aromatic substances is inhibited by the aforementioned aromatic substance formation inhibitor, as well as a plant life lengthening agent.
2. Description of Related Art
As inhibitors for enzymes which hydorolyzed glycosidic linkages such as glucosidase, various substances including saccharides and proteins derived from plants and microorganisms, synthetic oligosaccharide derivatives and the like have hitherto been reported. Among those, as for inhibitors of &bgr;-glucosidase, many substances derived from microorganisms or plants and obtained by organic synthesis have been described. Examples of such substances include, as for those derived from microorganisms or plants, nojirimycin (T. Niwa et. al., Agric. Biol. Chem. 34. 966 (1970)), 1-deoxynojirimycin (G. Legler et. al., Carbohydr. Res., 128, 61 (1984)), castanospermine (U. Fuhrann et. al., Biochem. Biophys. Acta., 825, 95 (1985)), 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine (A. Welter et. al., Phytochem. 15, 747 (1976), validamine (S. Ogawa et. al., J. Chem. Soc. Chem. Commun., 1843 (1987) and the like, and as for those obtained by organic synthesis, aminocyclopentane polyol (R. A. Farr et. al., Tetrahedron Lett., 31, 7109 (1990), cyclic amidine (G. Papandreou et. al., J. Am. Chem. Soc. 115, 11682 (1993), cyclic guanidine (J. Lehmann et. al. Leiebigs Ann. Chem., 805 (1994), and the like. These inhibitors are analogues of the substrates for glucosidases containing a nitrogen atom without exception.
These inhibitors are useful physiological active substances which can be used for various biochemical researches as an enzyme reaction analysis reagent, an affinity carrier, a agent for analysis of function and recognition mechanism of glycoprotein and the like, and it has also been attempted to utilize them as medical or agricultural chemicals in these days. These inhibitors which are expected to be applicable in various fields, as mentioned above, have been conventionally been produced by extraction from microorganisms or plants, or by organic synthesis.
However, in the case of those substances derived from microorganisms, it is quite difficult to purify such inhibitors from microbial culture broth. As for those ones derived from plants, their present amount is very little in the first place, and hence it is difficult to extract and purify them from plants. Thus, the both methods involve many problems as a method for industrial production. For example, they suffer from limitations concerning with cost, yield and the like. Further, most of reported conventional &bgr;-glucosidase inhibitors are their substrate analogues containing a nitrogen and therefore it is not easy to produce them through enzymatic synthesis or organic synthesis. That is, in the case of organic synthesis, only for introducing a nitrogen atom into a saccharide structure, several steps of organic synthesis reaction are required to perform, and hence it is disadvantageous as an industrial process. For the aforementioned reasons, it has hitherto been difficult to industrially produce glucosidase inhibitors which is utilizable for biochemical applications. Therefore, there has been desired an inhibitor having a relatively simple structure of which industrial production is possible.
By the way, a method for changing plant fragrance has been known, which comprises allowing a plant to absorb an aromatic substance, &bgr;-glucoside (Japanese Patent Unexamined Publication [KOKAI] No. 6-336401). This method consists, of adding aroma to a plant. Therefore, it was insufficient for improving aroma of plant with an unpleasant smell. Further, there has also been known changing plant fragrance by adding a dihydric alcohol such as propylene glycol as plant fragrance deodorizing agent (Japanese Patent Unexamined Publication [KOKAI] No. 10-33647). Although this patent document describes that unpleasant smell of plant could be deodorized by adding a dihydric alcohol, its effectiveness was not satisfactory one. Further, while it is of course required to reduce fragrance of plants generally considered to be unpleasant, for example, that of gypsophila, lily, chrysanthemum etc., it may be also desirable as the case may be to reduce fragrance of plants considered pleasant, for example, that of rose, jasmine, lavender and the like. Therefore, it has been desired to develop an aromatic substance formation inhibitor that acts on any kind of aroma.
Currently, as plant aromatic substances, there are known, for example, monoterpene alcohols such as geraniol and citronel, aromatic alcohols such as phenethyl alcohol and benzyl alcohol and the like. These alcohols are contained in various flowers, teas, fruits, wines and the like, and it has become clear that they also exist as glycosides in addition to their free forms. Further, there have also been reported that the aromatic substance precursors of the aromatic substances such as geraniol and phenethyl alcohol, which are major aromatic substances of rose and the like, are &bgr;-glucosides, and biosynthesized in leaves and petals, respectively, and that &bgr;-glucosidases play an important role in the production process of aromatic substances (I. E. Ackermann et. al., J. Plant Physiol., 134, 567-572 (1989); K. Sakata, Oyo Tositsu Kagaku [Applied Saccharide Science], Vol.45, No.2, 123-129 (1998)).
That is, plant fragrance is formed by a mechanism that the aromatic substance precursor, &bgr;-glucoside, is hydrolyzed by &bgr;-glucosidase to liberate an aromatic substance. If the function of &bgr;-glucosidase in this mechanism can be inhibited, the aromatic substance precursor, &bgr;-glucoside, would not be hydrolyaed, and hence an aromatic substance will not be formed or its formation will be reduced. That is, it can be considered that, if &bgr;-glucosidase can be inhibited, the aromatic substance to be liberated is reduced and smell can be reduced.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a novel compound that has &bgr;-glucosidase inhibition activity and can easily be produced in an industrial process. Furthermore, another object of the present invention is to provide an aromatic substance formation inhibitor containing such a novel compound as an active ingredient, and plant or part thereof in which the formation of aromatic substances is inhibited by the aforementioned aromatic substance formation inhibitor.
As a result of the present inventors' researches, it was found that cycloalkyl &bgr;-glucosides which can be easily produced by organic synthesis or enzymatic synthesis had the &bgr;-glucosidase inhibition activity. Because these &bgr;-glucosides do not contain a nitrogen atom, their synthesis does not require any complicated synthetic process for introducing a nitrogen atom, and hence they can be produced by a relatively simple synthetic process, which means that their industrial production is possible. Furthermore, the present inventors studied various candidate aromatic substance formation inhibitors for plants from the viewpoint of searching substances capable of inhibiting &bgr;-glucosidase to prevent the hydrolysis of &bgr;-glucoside, thereby inhibiting the formation of aromatic substances, to find aromatic substance formation inhibitors for plants that have suitable activity for alleviating unpleasant smell and strong aroma of plants. As a result, it was unexpectedly found that the aforementioned cycloalkyl &bgr;-glucosides had marked activity for inhibiting the formation of plant aromatic substances and consequently reducing the amount of aromatic substances released from plants, and further found that they did not producing phytotoxicity against plants and also had life lengthening effect. Thus, they accomplished the present invention.
Cycloalkyl &bgr;-G

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cycolalkylated B-glucoside does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cycolalkylated B-glucoside, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cycolalkylated B-glucoside will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2822100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.