Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2001-09-19
2003-09-23
Dawson, Robert (Department: 1712)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C528S032000, C528S031000, C528S037000, C528S034000, C528S027000, C556S458000, C556S460000, C556S457000, C525S479000, C523S109000, C526S279000
Reexamination Certificate
active
06624236
ABSTRACT:
This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/EP99/10318 which has an International filing date of Dec. 22, 1999, which designated the United States of America and was not published in English.
The invention relates to polysiloxanes from cross-linkable monomers based on cyclosiloxanes and their use in polymerizable compositions. The invention relates in particular to polysiloxanes from sol-gel-condensable cyclosiloxane(meth)acrylates as well as resinous compositions, obtainable by hydrolytic condensation of one or more hydrolyzable and condensable cyclosiloxane(meth)acrylates.
STATE OF THE ART
Non-cyclic sol-gel-condensable siloxanes as well as polycondensates based on hydrolytically condensable siloxanes for use in the surface coating field are already known from EP-O 450 624-A2. Due to the structure of these compounds, they are particularly suitable for the preparation of coating materials, adhesives and sealing compounds.
Silicic acid (hetero)polycondensates which are modified with organic groups, as well as processes for their preparation, are already known in large numbers (DE-A-38 35 968, DE-A-40 11 045). Such condensates are used for the most varied purposes, for example as moulding compounds, surface coatings and coverings.
Condensable monomeric cyclic siloxanes are known from EP-A-0 475 437. Within the framework of the teaching this document, the siloxanes described are not condensed, but are used as coupling agents.
Due to the wide-ranging possible applications of this substance class, there is a constant demand for the modification of the already-known compounds in order to open up new fields of application and to optimize their properties for particular purposes.
In the field of dentistry, there is in particular the demand for low-shrinkage compositions curable by radical polymerization with good physical parameters such as bending and compressive strength and hardness. There is also a constant demand for mixtures which have a toxicologically acceptable amount of residual monomers. i.e. monomers which are not incorporated into the polymerized network.
OBJECT
The object of the invention is to provide a new class of polymers which are particularly suitable for use in the dental field. It is also to be possible to prepare from the corresponding monomers resinous compositions which—optionally in the presence of initiators—can be cured photochemically, thermally or chemically.
ACHIEVEMENT
This object is achieved according to the invention by polysiloxanes based on cyclic siloxanes which have sol-gel-condensable groups and simultaneously radically polymerizable groups and thus make possible an incorporation into a three-dimensional network of filling substances, which are optionally surface-treated, and optionally of further reactive monomers.
Unusually and surprisingly, it is the fact that, despite the generally low viscosity of the siloxanes used as starting substances, compositions with high compressive and bending strength can be obtained.
The use of cyclic-inorganic, in contrast to linear or branched organic compounds, is advantageous because, amongst other things, these produce a relatively little compressible, chemically stable network. The substituents on the central ring structure are evenly orientated in the spatial direction, which leads to an extremely homogeneous network. Fracture points can thereby be avoided.
Particularly interesting properties can be obtained through co-condensates of the monomers according to the invention based on cyclosiloxanes with organic monomers which are described for example in EP-0-450 624-A2. In particular, the degree of cross-linking of the cured, radically polymerized material can be increased.
Such co-condensates can be understood as co- and terpolymers of hydrolysates (leads to randomized co- and terpolymers) or pre-condensates (leads to block co- and terpolymers) of representatives of the formulae (1) with (2) as well as (7), (8) or (9). Both possibilities are meant herein. These co- and tercondensates obey the general formula (1a) mentioned later.
DEFINITIONS
In the following, the definitions to be understood within the framework of this invention are given for the terms alkyl or alkyl radical, alkenyl or alkenyl radical and aryl or aryl radical.
Straight-chained, branched or cyclic radicals with 1 to 20, preferably 1 to 10 carbon atoms and preferably low alkyl radicals with 1 to 6, preferably 1 to 4 carbon atoms for example are conceivable for alkyl.
Particularly preferred alkyl radicals in general are linear or branched or cyclic radicals, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-. butyl, isobutyl, n-pentyl, n-hexyl, cyclohexyl, 2-ethylhexyl, dodecyl, octadecyl.
Straight-chained, branched or cyclic radicals with 2 to 20, preferably 2 to 10 carbon atoms and preferably low alkenyl radicals with 2 to 6 carbon atoms for example are conceivable as alkenyl radicals.
Preferred alkenyl radicals are linear or branched or cyclic radicals, such as vinyl, allyl and 2-butenyl.
Aryl radicals are to be understood as those with 6 to 18, preferably 6 to 12 C atoms. Preferred definitions for aryl radicals are phenyl, biphenyl and naphthyl.
Alkoxy, acyloxy, alkylamino, dialkylamino, alkylcarbonyl, alkoxycarbonyl, arylalkyl, alkylaryl, alkylene, arylene and alkylenearylene radicals mentioned in the course of the invention are preferably derived from the alkyl and aryl radicals named above.
Special examples are methoxy, ethoxy, n- and i-propoxy, n-, i-, sec.- and tert-butoxy, monomethylamino, monoethylamino, dimethylamino, diethylamino, n-ethylanilino, acetyloxy, propionyloxy, methylcarbonyl, ethylcarbonyl, methoxycarbonyl, ethoxycarbonyl, benzyl, 2-phenylethyl and tolyl.
All named radicals can optionally carry one or more substituents, for example, halogen, alkyl, hydroxyalkyl, alkoxy, aryl, aryloxy, alkylcarbonyl, alkoxycarbonyl, furfuryl, tetrahydrofurfuryl, amino, monoalkylamino, dialkylamino, trialkylammonium, amido, hydroxy, formyl, carboxy, ercapto, cyano, nitro, epoxy, SO
3
H or PO
3
H
2
.
Fluorine, chlorine and bromide and in particular chlorine are preferred as halogens.
DETAILED DESCRIPTION OF THE INVENTION
The polysiloxanes according to the invention can be obtained by sol-gel condensation of
A1. 60 to 100 mol.-%, relative to the condensate from A1, A2 and A3, monomers or precondensates of sol-gel-condensable cyclic siloxanes of the general formula (1),
in which the variables are defined as follows:
R
1
, R
2
: alkyl with 1 to 10, preferably 1 to 5 C atoms, alkenyl with 1 to 10, preferably 1 to 5 C atoms, fluoroalkyl with 1 to 10, preferably 1 to 5 C atoms, cycloalkyl with 3 to 12, preferably 5 to 12 C atoms, aryl with 6 to 18, preferably 6 to 12 C atoms,
R
3
: R
5
—Z
R
4
: R
6
—(A—R
6
)
C
—SiX
a
R
7
b
,
R
5
, R
6
: alkylene linear or branched with 1 to 10, preferably 2 to 6 C atoms, alkenylene linear or branched with 1 to 10, preferably 2 to 6 C atoms, cycloalkylene with 3 to 12, preferably 5 to 8 C atoms, cycloalkenylene with 3 to 12, preferably 5 to 8 C atoms, alkarylene with 6 to 18, preferably 6 to 12 C atoms with up to 3 heteroatoms from the group O, N, S,
R
7
: alkyl with 1 to 10, preferably 1 to 5 C atoms, alkenyl with 1 to 10, preferably 1 to 5 C atoms, aryl with 6 to 18, preferably 6 to 12 C atoms, alkylaryl with 6 to 24, preferably 6 to 18 C atoms, arylalkyl with 6 to 24, preferably 6 to 18 C atoms,
Z: a linear, branched or cyclic organic radical with at least one C═C double bond or at least one epoxide function and at least 4 to 50 carbon atoms and up to 10 heteroatoms from groups O, N and S, Z preferably being OC(O)CH═CH
2
, OC(O)C(Me)═CH
2
, vinylcyclopropyl, norbornenyl, oxetanyl, 3,4-epoxycyclohexyl and alkenyl linear or branched with 1 to 20, preferably 2 to 6 C atoms,
A: O, S, NHC(O)O, NHC(O)NR
8
, OC(O)NH, OC(O), C(O)O,
X: H, halogen, hydroxy, acyloxy, alkylcarbonyl, NR
8
2
, alkoxy, alkoxycarbonyl, the acyl, alkyl and alkoxy radicals containing 1 to 10, preferably 1 to 6 C atoms,
R
8
: H, alkyl with 1 to 10, preferab
Bissinger Peter
Eckhardt Gunther
Gasser Oswald
Guggenberger Rainer
Soglowek Wolfgang
3M Espe AG
Dawson Robert
Peng Kuo-Liang
LandOfFree
Cyclosiloxane-based cross-linkable monomers, production... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cyclosiloxane-based cross-linkable monomers, production..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cyclosiloxane-based cross-linkable monomers, production... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3046102