Cyclin-dependent kinase inhibitors and uses thereof

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S298000, C536S023600, C435S252300, C435S320100, C435S419000, C435S468000

Reexamination Certificate

active

06710227

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to DNA sequences encoding cyclin-dependent kinase inhibitors as well as to methods for obtaining the same. The present invention also provides vectors comprising said DNA sequences, wherein the DNA sequences are operatively linked to regulatory elements allowing expression in prokaryotic and/or eukaryotic host cells. In addition, the present invention relates to the proteins encoded by said DNA sequences, antibodies to said proteins and methods for their production. Furthermore, the present invention relates to regulatory sequences which naturally regulate the expression of the above described DNA sequences. The present invention also relates to a method for controlling or altering growth characteristics of a plant and/or a plant cell comprising introduction and/or expression of one or more cyclin-dependent kinase inhibitors functional in a plant or parts thereof and/or one or more DNA sequences encoding such proteins. Also provided by the present invention is a process for disruption plant cell division by interfering in the expression of a substrate for cyclin-dependent protein kinase using a DNA sequence according to the invention wherein said plant cell is part of a transgenic plant. The present invention further relates to diagnostic compositions comprising the aforementioned DNA sequences, proteins and antibodies. The present invention also relates to methods for the identification of compounds being capable of activating or inhibiting the cell cycle. Furthermore, the present invention relates to transgenic plant cells, plant tissue and plants containing the above-described DNA sequences and vectors as well as to the use of the aforementioned DNA sequences, vectors, proteins, antibodies, regulatory sequences and/or compounds identified by the method of the invention in plant cell and tissue culture, plant breeding and/or agriculture.
Cell division is fundamental for growth in humans, animals and plants. Prior to dividing in two daughter cells, the mother cell needs to replicate its DNA. The cell cycle is traditionally divided into 4 distinct phases:
G1: the gap between mitosis and the onset of DNA synthesis;
S: the phase of DNA synthesis;
G2: the gap between S and mitosis;
M: mitosis, the process of nuclear division leading up to the actual cell division.
The distinction of these 4 phases provides a convenient way of dividing the interval between successive divisions. Although they have served a useful purpose, a recent flurry of experimental results, much of it as a consequence of cancer research, has resulted in a more intricate picture of the cell cycle's “four seasons” (Nasmyth, Science 274, 1643-1645, 1996; Nurse, Nature, 344, 503-508, 1990). The underlying mechanism controlling the cell cycle control system has only recently been studied in greater detail. In all eukaryotic systems, including plants, this control mechanism is based on two key families of proteins which regulate the essential process of cell division, namely protein kinases (cyclin-dependent kinases or CDKs) and their activating associated subunits, called cyclins. The activity of these protein complexes is switched on and off at specific points of the cell cycle. Particular CDK-cyclin complexes activated at the G1/S transition trigger the start of DNA replication. Different CDK-cyclin complexes are activated at the G2/M transition and induce mitosis leading to cell division. Each of the CDK-cyclin complexes execute their regulatory role via modulating different sets of multiple target proteins. Furthermore, the large variety of developmental and environmental signals affecting cell division all converge on the regulation of CDK activity. CDKs can therefore be seen as the central engine driving cell division.
In animal systems and in yeast, knowledge about cell cycle regulations is now quite advanced. The activity of CDK-cyclin complexes is regulated at five levels: (i) transcription of the CDK and cyclin genes; (ii) association of specific CDK's with their specific cyclin partner; (iii) phosphorylation/dephosphorylation of the CDK and cyclins; (iv) interaction with other regulatory proteins such as SUC1/CKS1 homologues and cell cycle kinase inhibitors (CKI); and (v) cell cycle phase-dependent destruction of the cyclins and CKIs.
The study of cell cycle regulation in plants has lagged behind that in animals and yeast. Some basic mechanisms of cell cycle control appear to be conserved among eukaryotes, including plants. Plants were shown to also possess CDK's, cyclins and CKI's. However plants have unique developmental features which are reflected in specific characteristics of the cell cycle control. These include for instance the absence of cell migration, the formation of organs throughout the entire lifespan from specialized regions called meristems, the formation of a cell wall and the capacity of non-dividing cells to re-enter the cell cycle. Another specific feature is that many plant cells, in particular those involved in storage (e.g. endosperm), are polyploid due to rounds of DNA synthesis without mitosis. This so-called endoreduplication is intimately related with cell cycle control.
Due to these fundamental differences, multiple components of the cell cycle of plants are unique compared to their yeast and animal counterparts. For example, plants contain a unique class of CDKs, such as CDC2b in Arabidopsis, which are both structurally and functionally different from animal and yeast CDKs. The further elucidation of cell cycle regulation in plants and its differences and similarities with other eukaryotic systems is a major research challenge. Strictly for the case of comparison, some key elements about yeast and animal systems are described below in more detail.
As already mentioned above, the control of cell cycle progression in eukaryotes is mainly exerted at two transition points: one in late G
1
, before DNA synthesis, and one at the G
2
/M boundary. Progression through these control points is mediated by cyclin-dependent protein kinase (CDK) complexes, which contain, in more detail, a catalytic subunit of approximately 34-kDa encoded by the CDK genes. Both
Saccharomyces cerevisiae
and
Schizosaccharomyces pombe
only utilize one CDK gene for the regulation of their cell cycle. The kinase activity of their gene products p34
CDC2
and p34
CDC28
in
Sch. pombe
and in
S. cerevisiae
, respectively, is dependent on regulatory proteins, called cyclins. Progression through the different cell cycle phases is achieved by the sequential association of p34
CDC2/CDC28
with different cyclins. Although in higher eukaryotes this regulation mechanism is conserved, the situation is more complex since they have evolved to use multiple CDKs to regulate the different stages of the cell cycle. In mammals, seven CDKs have been described, defined as CDK1 to CDK7, each binding a specific subset of cyclins. In animal systems, CDK activity is not only regulated by its association with cyclins but also involves both stimulatory and inhibitory phosphorylations. Kinase activity is positively regulated by phosphorylation of a Thr residue located between amino acids 160-170 (depending on the CDK protein). This phosphorylation is mediated by the CDK-activating kinase (CAK) which interestingly is a CDK/cyclin complex itself. Inhibitory phosphorylations occur at the ATP-binding site (the Tyr15 residue together with Thr14 in higher eukaryotes) and are carried out by at least two protein kinases. A specific phosphatase, CDC25, dephosphorylates these residues at the G
2
/M checkpoint, thus activating CDK activity and resulting in the onset of mitosis. CDK activity is furthermore negatively regulated by a family of mainly low-molecular weight proteins, called cyclin-dependent kinase inhibitors (CKIs). Kinase activity is inhibited by the tight association of these CKIs with the CDK/cyclin complexes. CKIs are produced during development when further cell division has to be prevented. In mammals CKIs have been shown to be involved in many dif

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cyclin-dependent kinase inhibitors and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cyclin-dependent kinase inhibitors and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cyclin-dependent kinase inhibitors and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.