Cyclical thermal management system

Aeronautics and astronautics – Aircraft control – Airship control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S098000, C244S061000

Reexamination Certificate

active

06425552

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to a cyclical thermal management system for maintaining a high altitude platform within a particular altitude range. More particularly, the invention pertains to a long duration, energy efficient, cyclical thermal management system for maintaining high altitude vehicles at a particular altitude and pitch attitude by cyclically manipulating the temperature of one or more of the lifting gases or ballast components in the high altitude platform in response to the effects of diurnal heating and nocturnal cooling cycles and seasonal variations in daylight cycles, the solar flux, and the albedo flux from earth.
The novel cyclical system of the invention responds to the sun's cyclical heating and nocturnal cooling of lifting gases in geostationary high altitude platforms by a corresponding cyclical regulation or manipulation of the temperature of the lifting gas or ballast components and hence buoyancy of the platform to maintain the platform within a particular altitude range and at a particular pitch attitude. The cyclical thermal regulation or manipulation of the lifting gas or ballast components involves not only a daily cycle responsive to the heating and cooling of the lifting gas by the sun, but also the seasonal cyclical pattern of the climate of the particular geostationary location above the surface of the earth.
The cyclical regulation or manipulation of the lifting gas is achieved by processing energy by utilizing cyclical heating and cooling physical actions and chemical reactions alone or together with the chemical or mechanical processing of a portion of the lifting gas or ballast components to maintain a particular altitude or altitude range as well as the potential for future replenishment and storage of lifting gas in a non buoyant ballast compound. The cyclical processing of heat alone or together with the processing of the lifting gas or ballast components is the basic part of the novel active system of the invention.
Buoyancy control in accordance with the best mode of the invention is achieved by a combination of active and passive systems wherein the passive system is designed to reduce the volume of material processed or energy transfer manipulations required from the active system. The combination of a cyclical active system with the passive system also reduces energy and power requirements for maintaining a geostatic position. The related prior art has used the term “geostationary” to describe a predetermined horizontal position but not maintaining a predetermined altitude and pitch attitude. As used herein the term “geostatic” will be used to refer not only to a predetermined horizontal position but also a predetermined altitude and pitch attitude of the novel high altitude platform.
The cyclical active system involves a diurnal as well as a seasonal manipulation of the lifting gases or ballast components by either the conversion of a portion of the lifting gas into a material of less buoyancy as ballast and then later reconverting all or a portion of the material of less buoyancy back into a lifting gas or by an increase in the weight of the ballast component and then later decreasing the weight of the ballast component. For example, hydrogen and oxygen can be processed on a daily basis to provide physical and chemical exothermic reactions during the night to heat the lifting gas at night and provide water. Water produced at night is stored in a water ballonet where in freezing it stores energy in the form of latent and sensible heat which is used to help cool the lifting gas in the early morning before the water is reprocessed during the day to store the sun's energy for use in generating heat during the next night to control buoyancy. For seasonal variation water can be disassociated into hydrogen which is used as additional lifting gas during the winter and oxygen can be expelled into the stratosphere. In the summer oxygen can be reacquired from the stratosphere and recombined with the hydrogen lifting gas to produce water to reduce the volume of the lifting gases, increase the weight of the ballast components and increase the volume of recyclable energy storage materials available for heating and cooling processes to heat and cool the lifting gas.
The cyclical active system also involves a diurnal and seasonal manipulation of the temperature of the lifting gas utilizing heating and cooling physical processes and chemical reactions of the lifting gas or ballast component. The cyclical active system also includes a system for replenishing lifting gas lost through diffusion or the cyclical conversion and reconversion process or as may be required by seasonal variations for a particular geostatic location.
The cyclical active system also provides for the mechanical manipulation and regulation of the lift properties of the lifting gas by utilizing lifting gas circulation fans, shutters or louvers for shielding the lifting gas and variable heat conductance systems. The cyclical active system preferably also includes separately inflatable and deflatable layers for selectively varying the heat transmitted through the skin in relation to its relative position to the sun. These active systems are combined with various passive systems such as utilizing materials having desirable convective and radiative properties for various components including the utilization of heat and radiation reflective layers, a white coating on upper surfaces, no coating on the lower surfaces and materials having desirable convective and radiative properties for various components to reduce the volume of materials or the number of heat transfer manipulations required from the active system to maintain a geostatic position.
2. Description Of Related Prior Art Including Information Disclosed Under 37 C.F.R. 1.97 And 37 C.F.R. 1.98
Typically high altitude platforms are specialized types of balloons, dirigibles and lightweight platforms that are maintained aloft with a buoyant gas. These specialized prior art stratospheric platforms have remained aloft only for short durations which is typically a few days and at best a few weeks. For purposes of greater utility such platforms need to be maintained at a predetermined position which requires engines or other propulsion systems to maintain the high altitude platform over a predetermined location on the earth as stratospheric winds are encountered.
Prior art platforms referred to as geostationary were not geostatic due to the extreme temperature variations between the day and night at high altitude which caused the heating and expansion of the lifting gas during the day resulting in altitude gain, increased skin pressure and increased rates of diffusion of the lifting gas through the skin as well as possible failure of the skin material. The problem of increasing altitude during the day if not corrected in the prior art by venting or engine power is cumulative since each increase in altitude results in further expansion of the lifting gas and further lift and further skin pressure due to the decreasing density of the ambient air at higher altitudes. At night the nocturnal cooling of the lifting gas results in decreased volume and pressure and decreased altitude which could cause the platform to crash to the earth.
The conventional prior art solutions to the diurnal heating and nocturnal cooling cycles included venting a portion of the lifting gas during the day to reduce lift in an effort to maintain altitude and the integrity of the skin and a dropping of ballast at night to maintain altitude. This process of venting and dropping of ballast was for a flight duration limited by the volume of lifting gas and ballast. Another conventional prior art solution is the utilization of superpressurization to maintain altitude. The superpressurization solution required a balloon to maintain a constant volume with high internal pressures of 15,000 to 20,000 p.s.i. which put additional stress on the skin material and components that hold the skin together as discussed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cyclical thermal management system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cyclical thermal management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cyclical thermal management system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2833393

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.