Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues
Reexamination Certificate
1999-01-29
2001-07-03
Huff, Sheela (Department: 1642)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
C530S387100, C530S387900, C435S007900, C436S532000, C436S547000
Reexamination Certificate
active
06255456
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the nucleic acid and amino acid sequences of a cyclic GMP phosphodiesterase and to the use of these sequences in the diagnosis, prevention, and treatment of cancer and immune disorders.
BACKGROUND OF THE INVENTION
Cyclic nucleotides (cAMP and cGMP) function as intracellular second messengers to transduce a variety of extracellular signals, including hormones, light, and neurotransmitters. Cyclic nucleotide phosphodiesterases (PDEs) degrade cyclic nucleotides to the corresponding monophosphates, thereby regulating the intracellular concentrations of cyclic nucleotides and their effects on signal transduction. At least seven families of mammalian PDEs have been identified based on substrate specificity and affinity, sensitivity to cofactors, and sensitivity to inhibitory drugs (Beavo, J. A. (1995) Physiological Reviews 75: 725-48). Several of these families contain distinct genes many of which are expressed in different tissues as splice variants. Within families, there are multiple isozymes and multiple splice variants of those isozymes. The existence of multiple PDE families, isozymes, and splice variants presents an opportunity for regulation of cyclic nucleotide levels and functions.
Type 1 PDEs (PDE1s) are Ca
2+
/calmodulin dependent, appear to contain three different genes, each having at least two different splice variants. PDE1s have been found in the lung, heart, and brain. Some of the calmodulin-dependent PDEs are regulated in vitro by phosphorylation/dephosphorylation. Phosphorylation of PDE1 decreases the affinity of the enzyme for calmodulin as well as PDE activity, while increasing steady state levels of cAMP. PDE2s are cGMP stimulated PDEs that are localized in the brain that are thought to mediate the effects of cAMP on catecholamine secretion. PDE3s are one of the major families of PDEs present in vascular smooth muscle. PDE3s are inhibited by cGMP, have high specificity for cAMP as a substrate, and play a role in cardiac function. One isozyme of PDE3 is regulated by one or more insulin-dependent kinases. PDE4s are the predominant isoenzymes in most inflammatory cells, some PDE4s are activated by cAMP-dependent phosphorylation. PDE5s are thought to be cGMP specific, but may also affect cAMP function. High levels of PDE5s are found in most smooth muscle preparations, in platelets and in the kidney. PDE6s play a role in vision and are regulated by light and cGMP. The PDE7 class, consisting of only one known member, is cAMP specific and is most closely related to PDE4. PDE7 is not inhibited by rolipram, a specific inhibitor of PDE4 (See Beavo, supra). PDE8 represents a new family of PDEs that are cAMP specific, most closely related to PDE4, insensitive to rolipram, and sensitive to dipyridimole.
PDEs are composed of a catalytic domain of ~270 amino acids, an N-terminal regulatory domain responsible for binding cofactors, and, in some cases, a C-terminal domain of unknown function. A conserved motif, HDXXHXGXXN, has been identified in the catalytic domain of all PDEs. PDE families display approximately 30% amino acid identity within this catalytic domain, however isozymes within the same family typically display about 85-95% identity in this region (e.g. PDE4A vs PDE4B). Furthermore, within a family there is extensive similarity (>60%) outside the catalytic domain, while across families, there is little or no sequence similarity.
Many functions of immune and inflammatory responses are inhibited by agents that increase intracellular levels of cAMP (Verghese, M. W. et al. (1995) Mol. Pharmacol. 47:1164-1171). A variety of diseases have been attributed to increased PDE activity and associated with decreased levels of cyclic nucleotides. A form of diabetes insipidus in the mouse has been associated with increased PDE4 activity, and an increase in low-K
m
cAMP PDE activity has been reported in leukocytes of atopic patients. Defects in PDEs have also been associated with retinal disease. Retinal degeneration in the rd mouse, autosomal recessive retinitis pigmentosa in humans, and rod/cone dysplasia 1 in Irish Setter dogs have been attributed to mutations in the PDE6B gene. PDE3 has been associated with cardiac disease.
Many inhibitors of PDEs have been identified and have undergone clinical evaluation. PDE3 inhibitors are being developed as antithrombotic agents, antihypertensive agents, and as cardiotonic agents useful in the treatment of congestive heart failure. Rolipram, a PDE4 inhibitor, has been used in the treatment of depression, and other inhibitors of PDE4 are undergoing evaluation as anti-inflammatory agents. Rolipram has also been shown to inhibit lipopolysaccharide (LPS) induced TNF-alpha which has been shown to enhance HIV-1 replication in vitro. Therefore, rolipram may inhibit HIV-1 replication (Angel, J. B. et al. (1995) AIDS 9:1137-44). Additionally, rolipram, based on its ability to suppress the production of cytokines such as TNF alpha and beta and interferon gamma, has been shown to be effective in the treatment of encephalomyelitis. Rolipram may also be effective in treating tardive dyskinesia and was effective in treating multiple sclerosis in an experimental animal model (Sommer, N. et al. (1995) Nat.Med. 1:244-248; Sasaki, H. et al. (1995) Eur. J. Pharmacol 282:71-76).
Theophylline is a nonspecific PDE inhibitor used in the treatment of bronchial asthma and other respiratory diseases. Theophylline is believed to act on airway smooth muscle function and in an anti-inflammatory or immunomodulatory capacity in the treatment of respiratory diseases (Banner, K. H. and Page, C. P. (1995) Eur. Respir. J. 8:996-1000). Pentoxifylline is another nonspecific PDE inhibitor used in the treatment of intermittent claudication and diabetes-induced peripheral vascular disease. Pentoxifylline is also known to block TNF-alpha production and may inhibit HIV-1 replication (Angel et al., supra).
PDEs have also been reported to effect cellular proliferation of a variety of cell types and have been implicated in various cancers. Bang et al. (1994; Proc Natl Acad Sci U.S.A. 91:5330-5334) reported that growth of prostate carcinoma cell lines DU 145 and LNCaP was inhibited by delivery of cAMP derivatives and phosphodiesterase inhibitors. These cells also showed a permanent conversion in phenotype from epithelial to neuronal morphology. Others have suggested that PDE inhibitors have the potential to regulate mesangial cell proliferation and lymphocyte proliferation (Matousovic, K. et al. (1995) J. Clin. Invest. 96:401410; Joulain, C. et al. (1995) J. Lipid Mediat. Cell Signal. 11:63-79, respectively). Finally, Deonarain et al. (1994; Br. J.Cancer 70:786-94) describe a cancer treatment that involves intracellular delivery of phosphodiesterases to particular cellular compartments of tumors which results in cell death.
The discovery of new cyclic nucleotide phosphodiesterases and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer and immune disorders.
SUMMARY OF THE INVENTION
The invention features a substantially purified polypeptide, cyclic GMP phosphodiesterase (PDE9A), comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.
The invention further provides a substantially purified variant of PDE9A having at least 90% amino acid identity to the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also provides an isolated and purified polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide identity to the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO: 1.
Additionally, the invention provides a composition comprising a polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of
Fisher Douglas A.
Gooding Douglas H.
Streeter David Gray
Huff Sheela
Incyte Genomics Inc.
Incyte Genomics, Inc.
LandOfFree
Cyclic GMP phosphodiesterase does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cyclic GMP phosphodiesterase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cyclic GMP phosphodiesterase will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2520223