Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2000-07-26
2003-09-09
Lipman, Bernard (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S315000, C524S533000, C524S555000, C524S563000
Reexamination Certificate
active
06617385
ABSTRACT:
This invention relates to a cyanoacrylate adhesive containing an ester as plasticizer.
Cyanoacrylate adhesives containing an ester as plasticizer are known. Thus, according to DE 34 00 577, up to 25% by weight of a plasticizer is added in addition to 4 to 30% by weight of a vinyl chloride/vinyl acetate copolymer. This plasticizer is an ester of an aromatic monocarboxylic or dicarboxylic acid and a monohydroxy or polyhydroxy compound. According to the document in question, neither the cure rate of the adhesive nor the quality of the bond during curing is significantly affected by the addition of this aromatic plasticizer. However, when these tests were re-run, it was found that the cure rate was clearly reduced. Thus, the setting rate of ethyl cyanoacrylate on EPDM, for example, is slowed from 5 seconds to 35 seconds by a 30% addition of butyl benzyl phthalate.
According to DE 43 17 886 also, the following esters are added to cyanoacrylate adhesives to reduce adhesion to the skin:
1. Aliphatic carboxylic acid esters containing an aliphatic group in which 6 or more carbon atoms are directly attached to one another.
2. Aliphatic carboxylic acid esters containing at least two aliphatic groups in which 4 or more carbon atoms are directly attached to one another.
3. Carboxylic acid esters of a carbocyclic compound which, in a carboxylic acid residue or an alcohol residue, contains an aliphatic group in which 5 or more carbon atoms are directly attached to one another.
The cyanoacrylate adhesives additionally contain polymerization accelerators.
The problem addressed by the present invention was to obviate the disadvantages of known plasticizer-containing cyanoacrylate adhesives and, in particular, to provide a cyanoacrylate adhesive characterized by high stability in storage, useful strength values and virtually the same setting rates.
The solution provided by the invention is defined in the claims and consists essentially in using 1 to 60% by weight of a polymer, based on the adhesive as a whole, in addition to at least one partial and/or full ester of a monobasic or polybasic aliphatic carboxylic acid containing 1 to 5 carbon atoms directly attached to one another and monohydric to pentahydric aliphatic alcohols containing 1 to 5 carbon atoms directly attached to one another, the number of carbon atoms directly attached to one another in the other aliphatic groups being at most 3 where one aliphatic group contains 4 or 5 carbon atoms directly attached to one another.
The alcohol component of the ester is preferably an alcohol containing 1 to 5 and, more particularly, 2 to 4 OH groups and 2 to 5 and, more particularly, 3 or 4 carbon atoms directly attached to one another. The number of carbon atoms not directly attached to one another may be up to 110 and, more particularly, up to 18 carbon atoms.
Examples of monohydric alcohols are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2,2-dimethyl-1-propanol, 2-methyl-1-propanol, 2,2-dimethyl-1-propanol, 2-methyl-2-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, cyclopentanol, cyclopentenol, glycidol, tetrahydrofurfuryl alcohol, tetrahydro-2H-pyran4-ol, 2-methyl-3-buten-2-ol, 3-methyl-2-buten-2-ol, 3-methyl-3-buten-2-ol, 1-cyclopropyl ethanol, 1-penten-3-ol, 3-penten-2-ol, 4-penten-1-ol, 4-penten-2-ol, 3-pentin-1-ol, 4-pentin-1-ol, propargyl alcohol, allyl alcohol, hydroxyacetone, 2-methyl-3-butin-2-ol.
Examples of dihydric alcohols are ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, dihydroxyacetone, thioglycerol, 2-methylpropane-1,3-diol, 2-butine-1,4-diol, 3-butene-1,2-diol, butane-2,3-diol, butane-1,4-diol, butane-1,3-diol, butane-1,2-diol, 2-butene-1,4-diol, 1,2-cyclopentane diol, 3-methylbutane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 4-cyclopentene-1,3-diol, 1,2-yclopentane diol, 2,2-dimethylpropane-1,3-diol, pentane-1,2-diol, pentane-2,4-diol, pentane-1,5-diol, 4-cyclopentene-1,3-diol, 2-methylenepropane-1,3-diol, 2,3-dihydroxy-1,4-dioxane, 2,5-dihydroxy-1,4-dithiane.
Examples of trihydric alcohols are glycerol, erythrulose, butane-1,2,4-triol, erythrose, threose, trimethylolethane, trimethylolpropane and 2-hydroxymethylpropane-1,3-diol.
Examples of tetrahydric alcohols are erythritol, threitol, pentaerythritol, arabinose, ribose, xylose, ribulose, xylulose, lyxose, ascorbic acid, gluconic acid-&ggr;-lactone.
Examples of pentahydric alcohols are arabitol, adonitol, xylitol.
In one particular embodiment of the invention, the polyhydric alcohols described above may be used in etherified form. The ethers may be prepared from the above-mentioned alcohols, for example by condensation reactions, Williamson's ether synthesis or by reaction with alkylene oxides, such as ethylene, propylene or butylene oxide. Examples include diethylene glycol, triethylene glycol, polyethylene glycol, diglycerol, triglycerol, tetraglycerol, pentaglycerol, polyglycerol, technical mixtures of the condensation products of glycerol, glycerol propoxylate, diglycerol propoxylate, pentaerythritol ethoxylate, dipentaerythritol, ethylene glycol monobutyl ether, propylene glycol monohexyl ether, butyl diglycol, dipropylene glycol monomethyl ether.
Monobasic carboxylic acids which may be used for the esterification reaction with the alcohols mentioned above include formic acid, acrylic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-oxovaleric acid, 3-oxovaleric acid, pivalic acid, acetoacetic acid, levulinic acid, 3-methyl-2-oxobutyric acid, propiolic acid, tetrahydrofuran-2-carboxylic acid, methoxyacetic acid, dimethoxyacetic acid, 2-(2-methoxyethoxy)-acetic acid, 2-methyl acetic acid, pyruvic acid, 2-methoxyethanol, vinyl acetic acid, allyl acetic acid, 2-pentenoic acid, 3-pentenoic acid, tetrahydrofuran-2-carboxylic acid.
Examples of polybasic carboxylic acids include oxalic acid, malonic acid, fumaric acid, maleic acid, succinic acid, glutaric acid, acetylene dicarboxylic acid, oxaloacetic acid, acetone dicarboxylic acid, mesoxalic acid, citraconic acid, dimethyl malonic acid, methyl malonic acid, ethyl malonic acid.
Other suitable starting materials are hydroxycarboxylic acids, for example tartronic acid, lactic acid, malic acid, tartaric acid, citramalic acid, 2-hydroxyvaleric acid, 3-hydroxyvaleric acid, 3-hydroxybutyric acid, 3-hydroxyglutaric acid, dihydroxyfumaric acid, 2,2-dimethyl-3-hydroxypropionic acid, dimethylolpropionic acid, glycolic acid.
The esterification may be either complete or partial. Mixtures of the above-mentioned acids may optionally be used for the esterification.
The esters to be used in accordance with the invention prepared from the above-mentioned alcohols and carboxylic acids or the corresponding derivatives are preferably free from catalysts, more particularly alkali metals and amines. This can be achieved by treating the esters according to the invention with acids, ion exchangers, acetic acid clays, aluminium oxides, active carbon or other auxiliaries known to the expert. The esters may be dried and further purified by overhead distillation.
Examples of the esters according to the invention include ethyl acetate, butyl acetate, glycerol triacetate, glycerol tripropionate, triglycerol pentaacetate, polyglycerol acetate, diethylene glycol diacetate, 3-hydroxyvaleric acid ethyl ester, lactic acid butyl ester, lactic acid isobutyl ester, 3-hydroxybutyric acid ethyl ester, oxalic acid diethyl ester, mesoxalic acid diethyl ester, malic acid dimethyl ester, malic acid diisopropyl ester, tartaric acid diethyl ester, tartaric acid dipropyl ester, tartaric acid diisopropyl ester, glutaric acid dimethyl ester, succinic acid dimethyl ester, succinic acid diethyl ester, maleic acid diethyl ester, fumaric acid diethyl ester, malonic acid diethyl ester, acrylic acid-2-hydroxyethyl ester, 3-oxovaleric acid methyl ester, glycerol diacetate, glycerol tributyrate, glycerol tripropionate, glycerol dipropionate, glycerol triisobutyrate, glycerol diisobutyrate, glycidyl butyrate, acetoacetic aci
Duhm Lydia
Klauck Wolfgang
Klein Johann
Maier Wolfgang
Carmen Michael E.
Harper Stephen D.
Henkel Kommanditgesellschaft auf Aktien
Lipman Bernard
LandOfFree
Cyanacrylate adhesive with ester and polymer additives does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cyanacrylate adhesive with ester and polymer additives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cyanacrylate adhesive with ester and polymer additives will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3027356