Customizable connector keying system

Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S681000

Reexamination Certificate

active

06821159

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to electrical connectors. Specifically, the present invention relates to systems and methods for keying connectors to prevent erroneous connections.
2. Description of the Related Art
Connector keying systems are employed in various demanding applications including connectors for electronic test equipment, computers, life support machines, and etc. Such keying systems must reliably prevent inadvertent electrical connections.
Keying systems are particularly important in interfacing applications involving electronic test equipment, where interface cables must be properly connected to prevent costly hardware or software damage. Typically, different connector types are used to interface hardware components. For example, one interface cable may be fitted with a 9-pin micro-D style connector, while another interface cable may be fitted with a 160-pin micro-D style connector.
Some applications require plural interface cables having similar connector pin arrangements. In these applications, the connectors are often labeled (by color or part number) to facilitate proper connections. However, connector labeling is undesirably susceptible to human error.
Alternatively, similar connectors are permanently modified via a special keying system to prevent inadvertent interfacing of incompatibles hardware components. Conventional keying systems are typically built into the connector and are not readily customizable without extensive modification of the connector. The systems may include various pins that are selectively arranged on flanges of the male and female connector components. Connection between the male and female connector components is only allowed when the pin arrangements match up for proper connector mating.
Conventionally, male and female connector pairs are permanently keyed in a particular configuration and sold together. Consequently, to use the keying system, pre-existing interface cable arrangements require costly rework or are typically replaced with new cable fitted with accompanying keyed connectors. Unfortunately, cable and connector replacement is often time-consuming and costly, especially in applications having cables that run through walls or floors. Cable and connector replacement is particularly problematic in applications having connector components that are permanently installed on circuit boards. Removal of the circuit boards for permanent connector replacement or modification is often impractical.
Alternatively, existing connectors are permanently modified to accommodate the keying system. Connector machining is often required to modify the connectors to accommodate the keying system or to change the current keying configuration, which is undesirably costly and causes system downtime. Consequently, conventional keying systems are often limited to certain applications.
Hence, a need exists in the art for a versatile, removable, and customizable connector keying system that does not require permanent connector modification and is easily programmable to accommodate several keying configurations and various connector types.
SUMMARY OF THE INVENTION
The need in the art is addressed by the connector keying system of the present invention. In the illustrative embodiment, the inventive keying system is adapted for use with connectors having flanges. The keying system includes a first shaped feature that is removably connected to a first connector component. A second shaped feature is removably connected to a second connector component. The first shaped feature and the second shaped feature are shaped so that the first shaped feature fits with the second shaped feature to selectively allow the first connector component to connect with the second connector component.
In a specific embodiment, the keying system further includes a first mechanism for removably connecting the first shaped feature to the first connector component and the second shaped feature to the second connector component. A second mechanism enables selective orientation of the first shaped feature and the second shaped feature to customize the keying system.
The first mechanism includes a first retainer body and a second retainer body for facilitating attachment of the first shaped feature to the first connector component and the second shaped feature to the second connector component, respectively. The second mechanism includes a first feature assembly for accommodating the first shaped feature. The first feature assembly is selectively rotatable relative to the first retainer body to selectively cause a different orientation of the first shaped feature. A second feature assembly is selectively rotatable relative to the second retainer body to selectively cause a different orientation of the second shaped feature.
In a more specific embodiment, the first feature assembly and the second feature assembly are pin assemblies. The first shaped feature and the second shaped feature comprise a first pin and hole arrangement and a second pin and hole arrangement, respectively. The first pin and hole arrangement is configured relative to the second pin and hole arrangement to allow only the first connector and the second connector, having the first pin and hole arrangement and the second pin and hole arrangement mounted thereon, respectively, to interconnect.
The first and second pin assemblies have first and second corresponding pin assembly bases with predetermined numbers of pins mounted on front surfaces thereof. The first and second pin assemblies have first and second corresponding shafts therethrough extending from rear surfaces of the first and second pin assembly bases, respectively. The first and second retainer bodies have openings therein for receiving the first and second shafts of the first and second pin assemblies.
The first mechanism includes first and second retaining rings for retaining first and second connector flanges of the first and second connectors, respectively, between the first retaining ring and the first retainer body and between the second retaining ring and the second retainer body. The first and second retaining rings are attachable to the first and second shafts, respectively.
The first and second shafts are completely hollow with an internal thread that extends part way through the shaft. The first connector component includes a jackscrew that extends through the first connector component and through the first and second holes to secure the first connector component to the second connector component and to secure the mating connectors. The first and second retainer bodies have ridges for mating with the pin assembly bases to secure the pin assembly bases relative to the retainer bodies to prevent rotation of the pin assembly bases relative to the retainer bodies when the keying systems are installed on the first and the second connector components. The first and second retainer bodies have another opposing ridge that prevents rotation of the retainer body relative to the connector body as well.
The novel design of the present invention is facilitated by the pin assemblies, which may be rotated relative to associated retainer bodies that hold the pin assemblies to corresponding connector flanges. Use of the retainer body and associated retaining ring allow the keying pin assemblies to be connected to or removed from connector flanges without permanently modifying the connectors. The ability to rotate the pin assemblies relative to the retainer bodies by simply removing the retaining clip and manually rotating the pin assemblies enables different keying configurations. Hence, the keying system of the present invention is easily adaptable to various existing connectors; does not require permanent connector modification or machining; and is easily customizable for plural keying configurations.


REFERENCES:
patent: 3714617 (1973-01-01), Bright et al.
patent: 3778749 (1973-12-01), Kapell
patent: 3950059 (1976-04-01), Anhalt et al.
patent: 4140357 (1979-02-01), Wolz et al.
patent: 4929184 (1990-05-01), Emadi e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Customizable connector keying system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Customizable connector keying system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Customizable connector keying system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3288137

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.