Multiplex communications – Diagnostic testing – Determination of communication parameters
Reexamination Certificate
2000-12-07
2004-09-28
Nguyen, Brian (Department: 2661)
Multiplex communications
Diagnostic testing
Determination of communication parameters
C370S469000, C709S230000
Reexamination Certificate
active
06798751
ABSTRACT:
FIELD OF THE INVENTION
Certain concepts involved in the present invention relate to techniques for implementing data communication services, for example in a local access network utilizing digital subscriber line technology, to support quality of service (QoS) and local introduction of vertical services. Other concepts involved in the present invention relate to techniques for automatically provisioning services through such a network. Other concepts involved in the present invention relate to placement of protocol stack shims on equipment that is separate from the devices used by a customer.
BACKGROUND
Modern society continues to create exponentially increasing demands for digital information and the communication of such information between data devices. Local area networks use a network, cable or other media to link stations on the network for exchange of information in the form of packets of digital data. These networks have proven quite successful in providing data communications in commercial applications. However, the common local area network architectures require installation of specialized wiring and use of specific wiring topologies. For example, the most popular network protocols, such as Ethernet, require special rules for the wiring, for example with regard to quality of wire, range of transmission and termination. Furthermore, to extend communications to a wider domain still requires connection of at least one node of the local area network out to a wider area network, such as the network of an Internet Service Provider (ISP). High speed links enabling such wide area access from a LAN domain, for example using T1 lines, are quite expensive and justified only for hi-end commercial users.
The most common form of computer-to-computer communication in use today, particularly for wide area communications, still relies on modems and analog telephone network connections. The telephone-based operation provides the voice grade analog modem a unique power, the necessary connections are virtually ubiquitous. Such modems can communicate via almost any telephone line or wireless telephone (e.g. cellular) to any other such telephone connection, virtually anywhere in the world. The telephone network, however, was designed to provide approximately 3.3 kHz of analog voice bandwidth. Consequently, the data rates that are possible through the telephone network are quite low. Even with a variety of recent enhancements, the data speeds remain at or below 56 kbps.
Integrated Services Digital Network (ISDN) offers somewhat faster data communications and the capacity for concurrent data and voice telephone services. The 160 kb/s capacity carries two bearer (B) channels, each at 64 kb/s, one data (D) channel at 16 kb/s and overhead information in a 16 kb/s embedded operations channel (EOC). The two B-channels may be used separately, for example, for one voice telephone call and one data communication session. The D-channel typically is used for signaling, for call set-up and the like. Some applications allow aggregation of the channels, to combine the B-channels and possibly the D-channel to provide data communications up to the combined rate of 144 kb/s. However, these data rates offered by ISDN already are too slow for many multimedia applications. The high-speed and wide availability of modern personal computers (PCs) continually gives rise to ever more sophisticated multimedia applications. Communications for such applications, typically between the PC and the Internet, already are driving the need for speed to rates far above those available on normal ISDN lines.
A number of technologies are being developed and are in early stages of deployment, for providing substantially higher rates of data communication, for example ranging form 640 kb/s to 7.1 Mb/s. For example, cable television companies are now beginning to offer ‘cable modem’ services, which allow customers to communicate data over available bandwidth on the coaxial cable of a cable television network. After considering several other options, a number of the local telephone carriers are working on enhancements to their existing copper-wire loop networks, based on various xDSL technologies.
The term xDSL here is used as a generic term for a group of higher-rate digital subscriber line communication schemes capable of utilizing twisted pair wiring from an office or other terminal node of a telephone network to the subscriber premises. Examples under various stages of development include ADSL (Asymmetrical Digital Subscriber Line), HDSL (High data rate Digital Subscriber Line) and VDSL (Very high data rate Digital Subscriber Line).
The telephone carriers originally proposed use of ADSL and similar high-speed technologies to implement digital video services, for example in networks sometimes referred to as video ‘dialtone’ networks. The ADSL line technology provided a mechanism for high-speed transport of MPEG encoded video information to video terminal devices in the customers' homes. Examples of such ADSL-based video dialtone networks are disclosed in U.S. Pat. Nos. 5,247,347, 5,410,343 and 5,621,728. The carriers are now deploying a range of xDSL data services targeted at high-speed Internet access and high-speed access to private data networks. U.S. Pat. No. 5,790,548 to Sistanizadeh et al. discloses an example of an ADSL based data network, e.g. for high-speed access to the Internet and to corporate LANs.
The current design goals of DSL data networks for Internet access do not support high-end vertical services, that is to say services demanding IP-based applications that require assurance of some level of quality of service (QoS). For example, packet-switched Voice over IP (VoIP) requires low latency, low jitter (i.e., a relatively constant bit rate), and non-correlated packet loss. Streaming video has similar requirements, and in addition, requires high bandwidth. DSL data networks designed to support high speed Internet and Intranet access have been optimized to support traffic that is bursty and is not sensitive to latency or jitter. For example, current implementations supporting ATM cell traffic employ the Unspecified Bit Rate (UBR) class of service, which does not provide any bandwidth or delay guarantees. Consequently, transport of video materials through such DSL data networks inflicts video delays, loss of audio/video synchronization, and image fragmentation.
Furthermore, lengthy bandwidth intensive sessions for video or other broadband applications may degrade the throughput to all other subscribers served through a shared node, such as a gateway router or a concentrated link. For two-way video, upstream will have even worse quality and throughput problems, due to the best effort nature of the DSL data network implemented for Internet access and because the upstream bandwidth is significantly less than that of the downstream channel.
To appreciate the situation and problems, it may be helpful here to consider an ADSL data implementation of a local access network, as a representative example, in somewhat more detail.
FIG. 14
is a block diagram of a typical ADSL data network of the type currently in-use by a number of incumbent and competitive local exchange carriers to provide high-speed access to Internet Service Providers (ISPs) and thus to the Internet.
FIG. 15
provides an alternative functional illustration of the elements of such a network. Of particular note,
FIG. 15
shows the various protocol stacks in association with the appropriate network elements.
As shown in
FIG. 14
, a central office (CO)
100
provides plain old telephone service (POTS) and digital subscriber line data service for a number of customers. For purposes of discussion, assume that the equipment at each of the various customer premises
200
connects directly to the CO
100
via twisted pair type copper wiring
300
. In an actual implementation, many customers may connect through such wiring to a remote terminal linked to the CO via optical fiber.
At each customer premises
200
in our example, the copper loop
300
carrying
Baum Robert T.
Voit Eric A.
Nguyen Brian
Stewart, Esq. Michael
Suchyta, Esq. Leonard C.
Verizon Communications Inc.
LandOfFree
Customer premises equipment for vertical services integration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Customer premises equipment for vertical services integration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Customer premises equipment for vertical services integration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238288