Printing – Processes
Reexamination Certificate
2003-04-14
2004-03-09
Eickholt, Eugene H. (Department: 2854)
Printing
Processes
C101SDIG029, C101S211000
Reexamination Certificate
active
06701844
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an improved color imaging process. More specifically, the present invention relates to an improved method for accurately printing color images on a golf ball.
BACKGROUND OF THE INVENTION
One traditional color printing process involves using a palette of multiple colors, referred to as process colors. One example of such a printing palette is CMYK. Using a combination of only four colors in a palette, any color can be created. These processes are typically used in everyday applications such as ink jet printers.
Using a palette of colors provides several advantages. For example, despite requiring only four different inks, a CMYK palette can create a large variety of colors. Because of this, a CMYK palette may be used to economically create high fidelity pictures. Traditional color printing processes have several disadvantages as well. For example, color consistency is often difficult to achieve. Typically, colors such as purple or yellow are difficult to accurately produce with a CMYK process. This can be a problem when a printing process is used to repeatedly print a large volume of pictures or designs. Typically, this is because consistent color repetition is difficult.
In professional photography applications, or applications where colors or designs must be accurately reproduced with optimal quality, traditional printing processes may not be suitable. Shading, for example, may be difficult using CMYK processes. In addition, CMYK requires a significant amount of trial and error to achieve a desired color. In high volume applications, or applications where there are strict color requirements, it may become prohibitively expensive to use this method of achieving correct color quality.
Another method of printing is referred to as a spot color process. This process is used for applications that typically involve up to five colors, where the overall image is separated into one or more regions with a color assigned to each region. Thus the color for each region is not created using a Euro process. A spot color process may be preferable in vector artwork applications, such as printing company logos that have a limited amount of colors or text, or when the color selected for the image may be difficult to accurately reproduce using a different process.
For some applications, an appearance of more colors than actually used to create an image may be obtained by varying the shade, screen, or tint of the spot colors. Moreover, the use of a gradient of the colors may help create a more realistic or improved quality image. The use of a gradient to improve spot color processes is further described in U.S. Pat. No. 5,778,793 to Mello, the entirety of which is incorporated herein.
One drawback of using a spot color process, however, is that it can be difficult to obtain a desired balance of color to accurately produce shading or create an image nearing photographic quality. As a result, using a spot color process can result in significant time and expense of trial and error in selecting a suitable color and balancing its use and tonality to create a desired effect.
In applications where a picture or design must be printed onto a three-dimensional surface, such as the curved surface of a golf ball, a pad printing process may be employed. The pad printing process is typically used because it is one of the most versatile printing processes due to its ability to print on three-dimensional objects and compound angles.
In a first step of the pad printing process, an image to be transferred is etched into a printing plate, commonly referred to as a cliché. Once mounted in a machine, the cliché may be flooded with ink. The surface of the cliché is then cleaned, leaving ink only in the image area. As solvents evaporate from the image area, the ink's ability to adhere to a transfer pad increases. Typically, the transfer pad is made out of silicone.
Next, the pad is positioned directly over the cliché, pressed onto it to pick up the ink, and then lifted away. The physical changes that take place in the ink between the time that the ink is placed in the cliché, and the time the pad picks up the ink, accounts for its ability to leave the cliché in favor of the pad.
After the pad has lifted away from the cliché, there is a delay before the ink is deposited on the object. During this stage, the ink has just enough adhesion to stick to the pad. In this stage, the ink can easily be wiped off, but it does not drip. The ink on the pad surface once again undergoes physical changes, i.e., solvents evaporate from the outer ink layer that is exposed to the atmosphere, making it tackier and more viscous.
The pad is pressed down onto the object, conforming to its shape and depositing the ink in a desired location. Even though the pad may compress considerably during this step, the contoured pad is designed to roll away from the object's surface, rather than press against it flatly. A properly designed pad avoids a zero degree contact angle with the object. Such a situation would trap air between the pad and the object, resulting in an incomplete transfer.
The pad then lifts away from the object and assumes its original shape, leaving all of the ink on the object. When the pad is pressed onto the object, the adhesion between the ink and the object is greater than the adhesion between the ink and the pad, resulting in a virtually complete deposit of the ink. This leaves the pad clean and ready for the next print cycle.
By combining the pad printing process with CMYK, or spot colors, a design or picture can be printed on many types of objects. However, a continuing need exists for a method for using the pad printing process to print color images onto objects precisely and accurately.
Methods for manipulating black and white images have been formulated in the past. One such method, called the Zone System, was invented by Ansel Adams in the 1930's. The Zone System allows a photographer to manipulate black and white images by adjusting three variables: CCD sensitivity; subject luminance; and exposure settings. By manipulating these three variables, a photographer can create an image that has increased contrast and visible details. This method is described in an article entitled “In the Zone”, by Dave Prochnow (Dave Prochnow, “In the Zone,”
Digital Foto
, August 2000, pp. 38-74).
Another method for manipulating black and white images is described by Wayne J. Cosshall in an article entitled “Flipping Channels”. (Wayne J. Cosshall, “Flipping Channels,”
Digital Foto
, April 2001, pp. 70-72).The method uses red, green and blue filters to view an image. According to the method, one of the filtered images is chosen based on the aesthetic qualities of the picture. The pictures viewed through the other filters are discarded, and a user is left with a black and white picture that provides the optimum contrast. Despite the advances in manipulating black and white images, a continuing need exists for a method of printing manipulated color images onto a golfball.
SUMMARY OF THE INVENTION
The present invention is generally directed towards a method for placing an image onto an object. In one embodiment, an image should first be obtained. The obtained image may then be filtered using any method known to those skilled in the art. After filtering the image, a replica based on the filtered image may be created, and then transferred to the object.
In a preferred embodiment, the filtering may be done by using a set of filters such as CMYK filters. A replica may be created by defining at least one region on an image. For each region, one of the filtered images may be chosen. The chosen filtered image may be manipulated and then assigned at least one color. In some embodiments, an image may be manipulated by varying characteristics such as shading, gradient, contrast, opacity, and tone.
Preferably, the image is transferred onto an object using a printing process known to those skilled in the art. In one embodiment, this printing process comprises a pad printing process. Pref
LandOfFree
Custom logo process does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Custom logo process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Custom logo process will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3264955