Boots – shoes – and leggings – Soles – Cushion
Reexamination Certificate
1997-04-16
2003-01-14
Patterson, M. D. (Department: 3728)
Boots, shoes, and leggings
Soles
Cushion
C036S028000, C036S043000
Reexamination Certificate
active
06505420
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to footwear, and more particularly to an article of footwear having a cushioning member disposed therein which provides enhanced cushioning properties to the article of footwear.
2. Description of Related Art
One of the problems associated with shoes has always been striking a balance between support and cushioning. Throughout the course of an average day, the feet and legs of an individual are subjected to substantial impact forces. Running, jumping, walking and even standing exert forces upon the feet and legs of an individual which can lead to soreness, fatigue, and injury.
The human foot is a complex and remarkable piece of machinery, capable of withstanding and dissipating many impact forces. The natural padding of fat at the heel and forefoot, as well as the flexibility of the arch, help to cushion the foot. An athlete's stride is partly the result of energy which is stored in the flexible tissues of the foot. For example, during a typical walking or running stride, the achilles tendon and the arch stretch and contract, storing energy in the tendons and ligaments. When the restrictive pressure on these elements is released, the stored energy is also released, thereby reducing the burden which must be assumed by the muscles.
Although the human foot possesses natural cushioning and rebounding characteristics, the foot alone is incapable of effectively overcoming many of the forces encountered during athletic activity. Unless an individual is wearing shoes which provide proper cushioning and support, the soreness and fatigue associated with athletic activity is more acute, and its onset accelerated. This results in discomfort for the wearer which diminishes the incentive for further athletic activity. Equally important, inadequately cushioned footwear can lead to injuries such as blisters, muscle, tendon and ligament damage, and bone stress fractures. Improper footwear can also lead to other ailments, including back pain.
Proper footwear should complement the natural functionality of the foot, in part by incorporating a sole (typically, an outsole, midsole and insole) which absorbs shocks. However, the sole should also possess enough resiliency to prevent the sole from being “mushy” or “collapsing,” thereby unduly draining the energy of the wearer.
In light of the above, numerous attempts have been made over the years to incorporate means into a shoe which provides improved cushioning and resiliency to the shoe. For example, attempts have been made to enhance the natural elasticity and energy return of the foot by providing shoes with soles which store energy during compression and return energy during expansion. These attempts have included using compounds such as ethylene vinyl acetate (EVA) or polyurethane (PU) to form midsoles. However, foams such as EVA tend to break down over time, thereby losing their resiliency.
Another concept practiced in the footwear industry to improve cushioning and energy return has been the use of fluid-filled devices within shoes. The basic concept of enhancing cushioning and energy return by transferring a pressurized fluid between the heel and forefoot areas of a shoe is known. U.K. Patent No. 338,266 to Rayne, U.S. Pat. No. 547,645 to Lacroix, U.S. Pat. No. 1,069,001 to Guy, U.S. Pat. No. 2,080,499 to Nathanson, and U.S. Reissue Pat. No. 34,102 to Cole, each disclose the basic concept of having cushions containing pressurized fluid disposed adjacent the heel and forefoot areas of a shoe. Each of these technologies presents its own complications. However, the overriding problem common to each of these technologies is that the cushioning means taught therein are inflated with a fluid under pressure. Each of the above-noted patents discloses a cushioning means wherein a pressurized gas is forced into the cushioning means, usually through a valve accessible from the exterior of the shoe.
There are several difficulties associated with using a pressurized fluid within a cushioning device. Most notably, it may be inconvenient and tedious to constantly adjust the pressure or introduce a fluid to the cushioning device. Moreover, it is difficult to provide a consistent pressure within the device thereby giving a consistent performance of the shoes. In addition, a cushioning device which is capable of holding pressurized gas is comparatively expensive to manufacture. Further, pressurized gas tends to escape from such a cushioning device, requiring the introduction of additional gas. Finally, a valve which is visible to the exterior of the shoe negatively affects the aesthetics of the shoe, and increases the probability of the valve being damaged when the shoe is worn.
A cushioning device which, when unloaded contains air at ambient pressure provides several benefits over similar devices containing pressurized fluid. U.S. Pat. No. 2,100,492 to Sindler and U.K. Patent Application No. 2,039,717 to Karhu-Titan both disclose the use of a cushioning device containing ambient air. However, neither of these patents provides for the transfer of air between the heel and forefoot portions of the shoe.
German Patent No. 820,869 to Weinhardt et al. and U.S. Pat. No. 4,577,417 to Cole both appear to disclose a cushioning device having heel and forefoot cavities containing ambient air. The Weinhardt et al. patent appears to disclose a pneumatic shoe warmer insert equipped with two air chambers joined by a tube. The Cole patent discloses a sole and heel structure having premolded bulges connected by a passageway, wherein air at atmospheric pressure is disposed within the sole and heel structure.
The technologies taught in these patents do not provide for more than one rate or type of air flow between the cavities. Both these patents show a cushioning device having merely a straight “tube” passageway which connects the cavities of the device. This straight “tube” structure results in the passageways providing only one rate or type of air flow between the cavities. Neither the Cole patent nor the Weinhardt et al. patent discloses a cushioning device which may be customized for different types of activities and body weights.
A similar disadvantage is present in U.S. Pat. No. 4,458,430 to Peterson. The Peterson patent describes a cushioning device having cushions disposed beneath the heel and front transverse arch of the foot. The cushions are partially or completely filled a fluid, which may be of varying viscosities. Similar to the above-noted devices, a major deficiency of the Peterson device is that the channels connecting the cushions are merely straight “tube” channels, of a uniform diameter throughout their length. As previously indicated, this structure has the disadvantage of providing only one amount or degree of cushioning, which cannot be tailored or modified to accommodate different athletic activities and body types.
Although attempts have been made to create valve means which can control or, vary the rate of fluid flow, such attempts have resulted in overly cumbersome, complex and expensive structures. U.S. Pat. No. 4,446,634 to Johnson et al. shows an article of footwear having heel and ball bladders, two conduits connecting the bladders, and valves disposed on the conduits. By rotating knobs attached to the valves, the rate of fluid flow between the bladders can be regulated. In addition to the difficulties associated with pressurized fluid, the Johnson et al. patent suffers from several other shortcomings. Most prominent among these are that the numerous parts and intricate interrelationship thereof results in a cushioning member which is expensive to manufacture, and prone to malfunction.
PCT Application No. PCT/GB91/00740 (International Publication No. WO 91/16831) to Seymour teaches valve means comprising two ribbed members formed from a stiff plastic which are disposed above and beneath a capillary tube. Because the ribbed members of the Seymour device are formed of a different material than the cushioning member thereof, the cost of manufacturing the devi
Litchfield Paul E.
Montross Matthew
Smith Steven F.
Patterson M. D.
Reebok International Ltd.
Sterne Kessler Goldstein & Fox P.L.L.C.
LandOfFree
Cushioning member for an article of footwear does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cushioning member for an article of footwear, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cushioning member for an article of footwear will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3039533