Manufacturing container or tube from paper; or other manufacturi – Control means energized in response to activator stimulated... – Responsive to work material – the product or means engaging...
Reexamination Certificate
1995-06-07
2001-01-30
Vo, Peter (Department: 3721)
Manufacturing container or tube from paper; or other manufacturi
Control means energized in response to activator stimulated...
Responsive to work material, the product or means engaging...
C493S464000, C493S967000
Reexamination Certificate
active
06179762
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to a cushioning conversion machine which converts paper stock into cushioning material, and more particularly, to a cushioning conversion machine having a controller which can be used to control a number of different machines and to record and to perform machine diagnostics.
BACKGROUND OF THE INVENTION
In the process of shipping an item from one location to another, a protective packaging material is typically placed in the shipping container to fill any voids and/or to cushion the item during the shipping process. Some commonly used protective packaging materials are plastic foam peanuts and plastic bubble pack. While these conventional plastic materials seem to perform adequately as cushioning products, they are not without disadvantages. Perhaps the most serious drawback of plastic bubble wrap and/or plastic foam peanuts is their effect on our environment. Quite simply, these plastic packaging materials are not biodegradable and thus they cannot avoid further multiplying our planet's already critical waste disposal problems. The non-biodegradability of these packaging materials has become increasingly important in light of many industries adopting more progressive policies in terms of environmental responsibility.
These and other disadvantages of conventional plastic packaging materials have made paper protective packaging material a very popular alternative. Paper is biodegradable, recyclable and renewable; making it an environmentally responsible choice for conscientious companies.
While paper in sheet form could possibly be used as a protective packaging material, it is usually preferable to convert the sheets of paper into a low density cushioning product. This conversion may be accomplished by a cushioning conversion machine, such as those disclosed in U.S. Pat. Nos. 4,026,198; 4,085,662; 4,109,040; 4,237,776; 4,557,716; 4,650,456; 4,717,613; 4,750,896; and 4,968,291. (These patents are all assigned to the assignee of the present invention and their entire disclosures are hereby incorporated by reference.) Such a cushioning conversion machine converts sheet-like stock material, such as paper in multi-ply form, into low density cushioning pads or dunnage.
A cushioning conversion machine, such as those disclosed in the above-identified patents, may include a stock supply assembly, a forming assembly, a gear assembly, and a cutting assembly, all of which are mounted on the machine's frame. During operation of such a cushioning conversion machine, the stock supply assembly supplies the stock material to the forming assembly. The forming assembly causes inward rolling of the lateral edges of the sheet-like stock material to form a continuous strip having lateral pillow-like portions and a thin central band. The gear assembly, powered by a feed motor, pulls the stock material through the machine and also coins the central band of the continuous strip to form a coined strip. The coined strip travels downstream to the cutting assembly which cuts the coined strip into pads of a desired length. Typically, the cut pads are discharged to a transitional zone and then, either immediately or at a later time, inserted into a container for cushioning purposes.
By selectively controlling the gear assembly (i.e., by activating/deactivating its motor) and the cutting assembly, a cushioning conversion machine can create pads of a variety of lengths. This feature is important because it allows a single machine to satisfy a wide range of cushioning needs. For example, relatively short pad lengths can be employed in connection with small and/or unbreakable articles, while longer pad lengths can be employed in connection with larger and/or fragile articles. Moreover, a set of pads (either of the same or different lengths) can be employed in connection with uniquely shaped and/or delicate articles, such as electronic equipment.
Presently, a variety of length-controlling systems are used to control pad length. For example, a manual system is available in which a packaging person manually activates the gear assembly (i.e., steps on a foot pedal) for a time period sufficient to produce a coined strip of the desired length. He/she then manually deactivates the gear assembly (i.e., releases the foot pedal) and activates the cutting assembly (i.e., simultaneously pushes two appropriate buttons on the machine's control panel) to cut the coined strip. In this manner, a pad of the desired length is created. Alternatively, the system is designed so that a manual deactivation of the gear assembly (i.e., release of the foot pedal) automatically activates the cutting assembly.
Another technique used to control pad length is a time-repeat system. In such a length-controlling system, a timer is electrically connected to the gear assembly. The timer is set for a period (i.e., seconds) which, based on an estimated gear velocity, corresponds to the desired length of the pad. The timer is set by trial and error to obtain the desired pad length. The time-repeat system is designed to automatically activate the gear assembly for the selected period and thereby, assuming the estimated gear velocity is constant, produce a coined strip of the desired length. The system then deactivates the gear assembly and, if the automatic cut feature is enabled, then activates the cutting assembly to cut the coined strip into a first pad of the desired length. Thereafter, the system automatically re-activates the gear assembly to repeat the cycle so that, if the timer has not been disabled, a multitude of pads of substantially the same length are continuously created.
A further available length-controlling system is a removal-triggered system. This system is similar to the time-repeat system in that it deactivates the gear assembly based on the setting of a timer. However, with the removal-triggered system, the gear assembly is not automatically reactivated. Instead, it is only reactivated when the cut pad is removed, either manually by the packaging person, mechanically by a conveyor or by gravity . Upon reactivation, another pad of the same length is produced unless the timer is disabled.
Yet another length-controlling system includes a length-selection system which allows a packaging person to select certain predetermined pad lengths. In such a system, a selection panel (e.g., a key pad) is provided with a plurality of length options (e.g., buttons) so that a packaging person can manually select the appropriate pad length. When a particular length option is selected, the gear assembly is automatically activated for a period of time (based on estimated gear velocity) corresponding to the selected pad length. At the expiration of this time period, the gear assembly is deactivated, and the cutter assembly is activated.
Due to the increased popularity of paper protective packaging material, manufacturers often employ a plurality of cushioning dunnage conversion machines with preset parameters to produce protective packaging for articles of different sizes and shapes. This arrangement often reduces setup time and allows a manufacturer to produce and ship out goods in a minimal amount of time. In addition, manufacturers now incorporate programmed controllers to control the operation of cushioning dunnage conversion machines. These controllers result in reduced manpower, more uniform products, lower production costs, less error, and a safer working environment.
The controllers operate by continuously monitoring its respective machine through employment of sensing circuits connected to the machine, which provide output signals to a pre-programmed processor to control the respective machine according to the manufacturer's specifications. Each different machine typically has a respective independent controller unique to that particular machine. Employing a different controller for each machine type often results in increased manufacturing costs and chances of error in manufacture, and complicates replacement and repair.
It would be desirable to provide a single co
Harding James
Ratzel Richard O.
Ranpak Corp.
Renner, Otto, Boiselle & Sklar LLP
Vo Peter
LandOfFree
Cushioning conversion machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cushioning conversion machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cushioning conversion machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2508967