Cursor control system with tactile feedback

Computer graphics processing and selective visual display system – Display peripheral interface input device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S157000, C345S160000, C345S162000, C345S163000, C345S182000, C345S182000

Reexamination Certificate

active

06373463

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to computer cursor pointing devices, and, more particularly, to computer cursor pointing devices with tactile feedback.
2. Description of the Related Art
In many computer applications, the current trend is toward moving the user interface to a graphical user interface (GUI). When using a GUI, the user accesses the functionality of the computer application by manipulating a computer-generated pointer rendered on the display screen. One way that the user manipulates the pointer is by maneuvering a computer cursor pointing device. Devices used for this operation to date include joysticks, trackball devices, mouse devices, and touchpad devices. The pointer on the screen tracks the movement of the computer cursor pointing device. For example, when using a touchpad, the pointer on the screen will track the movement of the user's finger on the touchpad. When the pointer is over a selectable component of the GUI such as a menu button, the user can select the menu button by pressing a select button on the computer cursor pointing device.
One shortcoming of the prior art is that the user will only receive limited feedback from the GUI and the computer cursor pointing device. Typically the only feedback received by the user is visual. For example, the menu button on the GUI might highlight or provide some other visual indication when selected. The only feedback from the computer cursor pointing device may be a clicking sound when the select button is physically depressed. Thus, it is imperative that the user maintains a high visual awareness of the GUI in order to use the GUI correctly. This high visual awareness can present problems in an environment such as an aircraft cockpit where the user only has a limited amount of time to look at the GUI.
GUIs are becoming increasingly popular in the context of modern aircraft flight deck controls. In the past, the pilot accessed many of the aircraft flight deck controls by manipulating knobs and buttons with his hands. The pilot could use his or her sense of touch to distinguish between the different control knobs and buttons. However, in modem cockpits, the relocation of control functionality to the GUI of a computer screen has limited the pilot's ability to use their sense of touch. This direction has led to the increased reliance on the pilot to manipulate control functions with one or more computer cursor pointing devices. As already discussed, presently known computer cursor pointing devices are limited in their ability to provide feedback to the user. Usually, the only feedback to the user is the visual feedback provided by a change in the display when the pointer is moved over a selectable region of the display. Some systems will also provide aural feedback from button presses. However, in a noisy cockpit, the aural feedback can easily be muffled by ambient noise.
In the cockpit, it is of utmost importance that the pilot can quickly and accurately locate functions on the GUI. The need to visually locate a pointer on the GUI has led to an increased heads down time for the pilot. This increased heads down time can lead to a reduced ability to maintain situational awareness. If the computer cursor pointing device could provide feedback to the user in the form of a motion or tactile movement, then the user could use their sense of touch to aid in locating the pointer on the GUI. This would lead to a reduced amount of heads down time for the pilot, and would increase their situational awareness.
Other examples of environments where the user has minimal time to focus on the GUI include vehicle operations, operating rooms, and military battlefields. Accordingly, the above shortcomings associated with aircraft cockpit GUIs can also be associated with other GUI applications.
Several computer cursor pointing devices that provide tactile feedback to the user are known. However, these prior art devices suffer from a number of practical limitations. For example, the article by M. Akamatsu, et al., entitled
A Comparison of Tactile, Auditory, and Visual Feedback in a Pointing Task Using a Mouse
-
Type Device
, Ergonomics 38, 816-827, discloses a mouse that provides tactile feedback via a solenoid-driven pin that projects through a hole in one of the mouse buttons. This mouse would be of limited use in an environment where space is limited, e.g., an aircraft cockpit. Touchpads, trackballs, or joysticks are commonly employed in such environments because they require less space for use. The above prior art mouse is also limited in that it only provides one type of tactile feedback, i.e., the protruding pin. A single type of tactile feedback is incapable of distinguishing between different areas of the GUI or different operations performed by the user. Another limitation of the above prior art mouse is that the user must keep his or her finger over the hole at all times in order to feel the protruding pin. This is not useful in an environment such as an aircraft cockpit where such delicate manipulation of a mouse is not feasible.
Another prior art device is disclosed in the article by I. S. MacKenzie, et al., entitled
The Tactile Touchpad
, Extended Abstracts of the CHI '97 Conference on Human Factors in Computing Systems, 309-310. However, this touchpad device is also limited as it is merely configured to provide tactile feedback to simulate a mouse button press and release. This touchpad device does not allow the user to reduce their visual awareness of the GUI by providing tactile feedback when the pointer is over a selectable component of the GUI such as a menu button.
A system is thus needed which overcomes the shortcomings of the prior art.
SUMMARY OF THE INVENTION
A cursor control system according to various aspects of the present invention is configured to provide tactile feedback that can be felt by the user. The cursor control system is suitable for interactive use with an application program on a computer. The tactile feedback is useful when the user wants to minimize the amount of time that is spent looking at the Graphical User Interface (GUI) of the application program. For example, in an aircraft cockpit, the present invention can reduce the amount of user head down time without affecting the user's ability to use the GUI in an efficient and accurate manner.
In particular, the cursor control system responds to specific conditions associated with the application program by providing tactile feedback that can be felt by the user. For example, when the cursor or pointer indicates a selectable component of the GUI, the cursor control system may cause the pointing device to vibrate, shake, or the like. In addition, when a valid selection is made on the GUI, the cursor control system may provide a distinguishable form of tactile feedback to the user.


REFERENCES:
patent: 5424756 (1995-06-01), Ho et al.
patent: 5870080 (1999-02-01), Burnett et al.
patent: 5973670 (1999-10-01), Barber et al.
patent: 5973689 (1999-10-01), Gallery
patent: 6061004 (2000-05-01), Rosenberg
patent: 6137479 (2000-10-01), Olsen et al.
patent: 6166723 (2000-12-01), Schena et al.
I.S. MacKenzie, Fitts' Law as a Performance Model in Human-Computer Interaction, 1991, Doctoral Dissertation, University of Toronto.
I.S. MacKenzie, A. Sellen and W. Buxton, A Comparison of Input Devices in Elemental Pointing and Dragging Tasks, 1991, Proceedings of the Chi '91 Conference on Human Factors in Computing Systems, pp. 161-166.
I.S. MacKenzie and W. Buxton, Extending Fitts' Law to Two-Dimensional Tasks, 1992, Proceedings of the CHI '92 Conference on Human Factors in Computing Systems, pp. 219-226.
I.S. MacKenzie and W. Buxton, The Prediction of Pointing and Dragging Times in Graphical User Interfaces, 1994, Interacting with Computers, 6, 213-227.
I.S. MacKenzie, Input Devices and Interaction Techniques for Advanced Computing, 1995, Virtual Environments and Advanced Interface Design, pp. 437-470.
I.S. MacKenzie, Movement Time Prediction in Human-Computer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cursor control system with tactile feedback does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cursor control system with tactile feedback, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cursor control system with tactile feedback will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2894792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.