Curative for anaerobic adhesive compositions

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S205000

Reexamination Certificate

active

06583289

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to a novel curative for anaerobic adhesive compositions.
2. Brief Description of Related Technology
Anaerobic adhesive compositions generally are well-known. See e.g., R. D. Rich, “Anaerobic Adhesives” in
Handbook of Adhesive Technology,
29, 467-79, A. Pizzi and K. L. Mittal, eds., Marcel Dekker, Inc., New York (1994), and references cited therein. Their uses are legion and new applications continue to be developed.
Conventional anaerobic adhesives ordinarily include a free-radically polymerizable acrylate ester monomer, together with a peroxy initiator and an inhibitor component. Oftentimes, such anaerobic adhesive compositions also contain accelerator components to increase the speed with which the composition cures.
Desirable anaerobic cure-inducing compositions to induce cure may include saccharin, toluidines, such as N,N-diethyl-p-toluidine and N,N-dimethyl-o-toluidine, acetyl phenylhydrazine (“APH”), maleic acid, and quinones, such as napthaquinone and anthraquinone. See e.g., Loctite U.S. Pat. No. 3,218,305 (Krieble), U.S. Pat. No. 4,180,640 (Melody), U.S. Pat. No. 4,287,330 (Rich) and U.S. Pat. No. 4,321,349 (Rich).
In addition, other curatives for anaerobic adhesives include thiocaprolactam (e.g., U.S. Pat. No. 5,411,988) and thioureas [e.g., U.S. Pat. No. 3,970,505 (Hauser) (tetra methyl thiourea), German Patent Document Nos. DE 1 817 989 (alkyl thioureas and N,N′-dicyclohexyl thiourea) and 2 806 701 (ethylene thiourea), and Japanese Patent Document No. JP 07-308,757 (acyl, alkyl, alkylidene, alkylene and alkyl thioureas)], certain of the latter of which had been used commercially up until about twenty years ago.
There is an on-going desire to find alternative technologies to differentiate existing products and provide supply assurances in the event of shortages or cessation of supply of raw materials. Accordingly, it would be desirable to identify new materials which function as curatives for anaerobic adhesives.
SUMMARY OF THE INVENTION
The present invention provides a new class of materials—trithiadiaza pentalenes—effective as curatives for anaerobic adhesive compositions. The addition of these materials into anaerobic adhesives as a replacement for conventional curatives (such as APH) surprisingly provides at least comparable cure speeds and physical properties for the reaction products formed therefrom.
This class of materials may be defined as those within the following structure:
where A and A
1
may be selected from O and N;
R, R
1
, R
2
and R
3
may be the same or different, and selected from hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, and aryl, having from 1 to about 30 carbon atoms, and may be substituted or interrupted with a heteroatom, such as O, N or S, and heterocyclic structures, or
R
1
and R
3
, taken together, may join to form a cyclic structure having from about 20 to about 28 ring atoms, and together represent dialkyl substituted polyether structures that may be substituted or interrupted with the trithiadiaza pentalene structure, which itself may or may not be substituted by A
1
, R
2
, or R
3
1
, as are defined above.
While certain compounds embraced by this formula are known [see German Patent Document No. 276 286; H. Graubaum et al., “Novel Crown Ethers with a Trithiadiazapentalene-Trithiotriuret Redox System”,
Angew. Chem. Int. Ed. Engl.,
36, 5, 1648-50 (1997); and C. T. Pedersen,
Sulfur Rpts.,
1, 1 (1980) and Houben-Weyl, Thiemene-Verlag, Stuttgart (1994)], none seem to be known or suggested to confer the benefits described herein. Rather, their utility has been reported in the field of complexation of silver and mercury—such as for extraction purposes (see supra Graubaum).
This invention also provides methods of preparing and using the inventive anaerobic adhesive compositions, as well as reaction products of the compositions.
The present invention will be more fully appreciated by a reading of the “Detailed Description of the Invention”, and the illustrative examples which follow thereafter.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides trithiadiaza pentalene materials as curatives for anaerobic adhesive compositions. The addition of these trithiadiaza pentalene materials into anaerobic adhesives as a replacement for conventional curatives surprisingly provides at least comparable cure speeds and physical properties for the reaction products formed.
The trithiadiaza pentalene materials may be defined as those within the following structure:
where A and A
1
may be selected from O and N;
R, R
1
, R
2
and R
3
may be the same or different, and selected from hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, and aryl, having from 1 to about 30 carbon atoms, and may be substituted or interrupted with a heteroatom, such as O, N or S, and heterocyclic structures, or
R
1
and R
3
, taken together, may join to form a cyclic structure having from about 20 to about 28 ring atoms, and together represent dialkyl substituted polyether structures that may be substituted or interrupted with the trithiadiaza pentalene structure, which itself may or may not be substituted by A
1
, R
2
, or R
3
, as defined above.
Examples of such materials include:
where R
7
is lower alkyl, such as methyl, ethyl, propyl and the like.
where Ph is
and p-TlO or p-Otl is
Examples of crown ether trithiadiaza pentalene materials include:
where R and R
2
are as described above, and a is an integer from 1-3.
Anaerobic compositions are based on a (meth)acrylate component, together with an anaerobic cure-inducing composition, such as one including the trithiadiaza pentalene materials of the present invention.
(Meth)acrylate monomers suitable for use as the (meth)acrylate component in the present invention may be chosen from a wide variety of materials, such as these represented by H
2
C═CGCO
2
R
1
, where G may be hydrogen, halogen or alkyl groups having from 1 to about 4 carbon atoms, and R
1
may be selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl or aryl groups having from 1 to about 16 carbon atoms, any of which may be optionally substituted or interrupted as the case may be with silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbonate, amine, amide, sulfur, sulfonate, sulfone and the like.
Additional (meth)acrylate monomers suitable for use herein include polyethylene glycol di(meth)acrylates, tetrahydrofuran (meth)acrylates and di(meth)acrylates, hydroxypropyl (meth)acrylate (“HPMA”), hexanediol di(meth)acrylate, trimethylol propane tri(meth)acrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, di-(pentamethylene glycol) dimethacrylate, tetraethylene diglycol diacrylate, diglycerol tetramethacrylate, tetramethylene dimethacrylate, ethylene dimethacrylate, neopentyl glycol diacrylate, trimethylol propane triacrylate and bisphenol-A di(meth)acrylates, such as ethoxylated bisphenol-A (meth)acrylate (“EBIPMA”).
Other (meth)acrylate monomers may also be used, such as reaction products of the diglycidylether of bisphenol-A with methacrylic acid and a (meth)acrylate ester corresponding to structure as shown below:
where R
4
may be selected from hydrogen, alkyl groups having from 1 to about 4 carbon atoms, hydroxyalkyl groups having from 1 to about 4 carbon atoms or
R
5
may be selected from hydrogen, halogen, and alkyl groups of from 1 to about 4 carbon atoms;
R
6 may be selected from hydrogen, hydroxy and
m is an integer equal to at least 1, e.g., from 1 to about 8 or higher, for instance, from 1 to about 4;
v is 0 or 1; and
n is an integer equal to at least 1, e.g., 1 to about 20 or more.
Still other (meth)acrylate monomers that may be used herein include silicone (meth)acrylate moieties (“SiMA”), such as those taught by and claimed in U.S. Pat. No. 5,605,999 (Chu), the disclosure of which is hereby expressly incorporated herein by referen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Curative for anaerobic adhesive compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Curative for anaerobic adhesive compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Curative for anaerobic adhesive compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142008

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.