Curable resin compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S034000, C528S038000

Reexamination Certificate

active

06569980

ABSTRACT:

TECHNICAL FIELD
The present invention relates to curable resin compositions containing an organic polymer having a reactive silicon group.
BACKGROUND OF THE INVENTION
The reactive silicon group is a group having a silicon atom to which hydroxyl group or a hydrolyzable group is bonded (hereinafter, referred to as “reactive silicon group”), and has a property capable of forming a siloxane bond in the presence of moisture or the like to form a crosslinkage.
The organic polymer having the reactive silicon group has an interesting property that the polymer is cured by the action of moisture in air or the like to form a rubbery cured product or the like. Therefore, this polymer has been used as sealants or adhesives.
Hitherto, a number of porous base materials such as mortar, concrete and ALC are employed as the materials to be adhered in the field of sealants and adhesives, and a strong adhesion to these porous materials is known to be difficult. For this reason, a method of applying a primer is used in most cases. However, especially when the adhesion interface is wetted by rain or water spraying after the application, the adhesiveness is lowered by the invasion of water from the porous part, whereby adhesion interfacial failure frequently occurs owing to the movement or vibration at joint parts or adhered parts. Japanese Patent Publication No. 28177/1987 tried to solve the problem but the method results in only unsatisfactory water-resistant adhesiveness to mortar.
Furthermore, in recent years, especially in the situation that the durability of buildings is extended, as sealants or adhesives enduring the movement at joint parts or adhered parts over a long period of time, preferred is a material which exhibits a low modulus, a high elongation, and a high break strength though modulus is generally required to some extent, and furthermore, needed is a material which is sufficiently excellent in adhering ability to a base material rather than in break strength under not only the condition that a treated material is not immersed in water but also the condition that it is immersed in water.
Under the circumstances, various investigations have been carried out for enhancing the adhesiveness. For example, Japanese Patent Publication No. 40782/1983 describes examples of amino group-substituted silane compounds and epoxy-group substituted silane compounds as adhesiveness-imparting agents for an organic polymer having a reactive silane group or the addition of two or more of them, but a combined use of the amino group-substituted silane compound and the epoxy-group substituted silane compound is not specifically described, and the effect is not described, too. Japanese Patent Publication No. 31726/1991 also describes an epoxy resin and the addition of an amino group-substituted silane compound or an epoxy-group substituted silane compound as an adhesiveness-imparting agent, but there is no specific description of a combined use of the amino group-substituted silane compound, the epoxy-group substituted silane compound and an epoxy resin as adhesiveness-imparting agents, and also the effect is not described. On the other hand, Japanese Patent Publication No. 28177/1987 describes the improvement of adhesiveness resulted from the addition of a product obtained by reacting an epoxy resin, an amino group-substituted silane compound and an epoxy-group substituted silane compound beforehand, but it is not described to add them independently without conducting a reaction beforehand, and the effect is not described, too. Moreover, Japanese Patent Publication No. 35421/1987 describes the addition of a product obtained by reacting an amino group-substituted silane compound and an epoxy-group substituted silane compound beforehand as an adhesiveness-imparting agent, but there is no description of the independent addition of the amino group-substituted silane compound and the epoxy-group substituted silane compound without conducting a reaction beforehand, and also the effect is not described.
The present invention is to provide a curable resin composition containing an organic polymer having a reactive silicon group, which is capable of exhibiting a low modulus, a high break strength, a high elongation and a good water-resistant adhesiveness to mortar.
DISCLOSURE OF THE INVENTION
As a result of the extensive studies for solving the above problems, the present inventors have found that a curable resin composition exhibiting an excellent water-resistant adhesiveness to mortar is surprisingly obtained in the case that specific two or three kinds of adhesiveness-imparting agents are added without conducting a reaction beforehand as compared with the case of adding the agents reacted beforehand, and have accomplished the invention.
Namely, the first of the invention relates to a curable resin composition which comprises (a) an organic polymer having at least one reactive silicon group in one molecule, (b) an amino group-substituted silane compound, and (c) an epoxy group-substituted silane compound.
Moreover, the second of the invention relates to a curable resin composition which comprises (a) an organic polymer having at least one reactive silicon group in one molecule, (b) an amino group-substituted silane compound, (c) an epoxy group-substituted silane compound, and (d) an epoxy resin.
BEST MODE FOR CARRYING OUT THE INVENTION
The main chain skeleton of the organic polymer (a) having at least one reactive silicon group in one molecule for use in the invention is not particularly limited, and the polymers having various main chain skeletons can be used.
Specifically, examples thereof include polyoxyalkylene polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene/polyoxypropylene copolymer, and polyoxypropylene/polyoxybutylene copolymer; hydrocarbon polymers such as ethylene/propylene copolymer, polyisobutylene, isobutylene/isoprene copolymer, polychloroprene, polyisoprene, isoprene or butadiene/acrylonitrile and/or styrene copolymer, polybutadiene, isoprene or butadiene/acrylonitrile, and/or styrene copolymer, and hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; polyester polymers obtained by the condensation of dibasic acids such as adipic acid with glycols or by the ring-opening polymerization of lactones; acrylate ester polymers such as polyacrylate esters obtained by the radical polymerization of monomers such as ethyl acrylate and butyl acrylate and acrylate ester copolymers of acrylate esters such as ethyl acrylate and butyl acrylate with vinyl acetate, acrylonitrile, methyl methacrylate or styrene; graft polymers obtained by the polymerization of a vinyl monomer in the above organic polymers; polysulfide polymers; polyamide polymers such as nylon 6 obtained by the ring-opening polymerization of &egr;-caprolactam, nylon 6,6 obtained by the polycondensation of hexamethylenediamine with adipic acid, nylon 6,10 obtained by the polycondensation of hexamethylenediamine with sebacic acid, nylon 11 obtained by the polycondensation of &egr;-aminoundecanoic acid, nylon 12 obtained by the ring-opening polymerization of &egr;-aminolaurolactam, and nylon copolymers having two or more components selected from the above nylons; polycarbonate polymers obtained by, for example, the polycondensation of bisphenol A with carbonyl chloride; diallylphthalate polymers; and the like. Among the polymers having the above main chain structures, preferred are polyester polymers, acrylate ester polymers, acrylate ester copolymers, polyoxyalkylene polymers, hydrocarbon polymers, polycarbonate polymers, and the like. Moreover, particularly preferred are polyoxyalkylene polymers essentially having a repeating unit represented by the general formula (1):
—R
1
—O—  (1)
(wherein R
1
represents a divalent organic group which is preferably a linear or branched alkylene group having 1 to 14 carbon atoms), since these polymers have relatively low glass transition temperatures and afford cured products having excellent cold resistance.
R

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Curable resin compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Curable resin compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Curable resin compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019683

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.