Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2001-04-11
2003-06-03
Zalukaeva, Tatyana (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S301000, C526S302000, C526S304000, C526S320000, C526S288000, C526S293000, C526S298000, C526S307300, C526S307400, C526S307600, C526S310000, C526S318100, C526S318200, C526S318440, C526S321000, C526S325000, C526S326000, C524S261000
Reexamination Certificate
active
06573348
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a curable composition providing an optical part such as a plastic lens and a camera lens and a product relevant to optics such as an adhesive and a coating agent, which have excellent optical properties such as the refractive index, the Abbe number and the transparency, and the heat resistance and have various excellent mechanical properties.
RELATED ART
An organic glass has drawn attention as an optical material, especially as a lens material, owing to the lighter weight property as compared with an inorganic glass. The organic glass such as a diethylene glycol bis(allyl carbonate) polymer has been presently used. The organic glass made of diethylene glycol bis(allyl carbonate) is light in weight, excellent in the impact resistance, the size stability, the mechanical processibility, and the hard coating property, and is widely used as a material for lenses of eye glasses in place of the inorganic glass.
However, the organic glass made of polyethylene glycol bis(allyl carbonate) has the refractive index as low as about 1.50. Therefore, in the practical application, the thickness of the lenses should be thick and it results in elimination of the advantage of light in weight and leads to a disadvantage that the appearance is inferior. Especially in case of lenses having high power, such tendency is considerable and the organic glass cannot necessarily be said to be suitable as a lens material for eye glasses.
In order to overcome such disadvantages, there are disclosed many proposals such as a resin obtained by reaction between a sulfur atom-containing polythiol compound and an isocyanate (cf. Japanese Patent Kokoku Publication No. 4-58489 (1992)), and a resin comprising polythiol containing a further larger quantity of sulfur atoms (cf. Japanese Patent Kokai Publication No. 2-270859 (1990)).
However, in case of using the isocyanate, the resultant composition has disadvantages that the composition is inferior in storage stability before curing and is easily affected with moisture in air and there is the problem such as the difficulty of the curing conditions. Another problem is that many of polyisocyanate compounds have high toxicity.
Also proposed is a method for copolymerization curing an unsaturated compound having at least one unsaturated group such as a (meth)acryloyl group and an allyl group, and a polymercapto compound having at least two mercapto groups (cf. Japanese Patent Kokoku Publication No. 2-35645 (1990)). When the bifunctional allyl compound such as diallyl phthalate and the polymercapto compound are used, the polymerization is not sufficiently proceeded, thus giving the insufficient heat resistance.
When a (meth)acrylic compound and a polymercapto compound are used as disclosed in Japanese Patent Kokai Publication No. 63-234032 (1988), the resultant material basically has an aliphatic structure to give the insufficient refractive index.
Furthermore, Japanese Patent Kokai Publication No. 4-351612 (1992) discloses that an aromatic vinyl compound and a (meth)acrylic acid ester having at least two polymerizable functional groups are copolymerized in presence of a thiol compound which is for the purpose of controlling the polymerization. However, the absolute amount of the thiol component is small and the impact resistance of the resultant cured material is insufficient.
Japanese Patent Kokai Publication No. 1-197528 (1989) discloses that a composition for a lens having a high refractive index comprises divinylbenzene and a thiol compound having two or more aliphatic SH groups. However, such composition having binary ingredients is insufficient in the heat resistance and at least one of the refractive index and the Abbe number is inferior. In some cases, the compatibility between divinylbenzene and the thiol compound is not good and a material having excellent transparency cannot be obtained.
No material having satisfactory physical properties such as the refractive index, the Abbe number, the heat resistance and the transparency has been obtained from the binary ingredients of divinylbenzene and the thiol compound.
SUMMARY OF THE INVENTION
One of objects of the present invention is to provide a curable resin composition capable of providing a cured material (e.g. an optical body) having excellent optical properties (e.g. the refractive index, the Abbe number and the transparency) and excellent heat resistance.
Inventors of the present invention have intensively investigated various compositions containing binary ingredients of divinylbenzene and a thiol compound imparting high heat resistance and high transparency while maintaining a high refractive index and a high Abbe number, and then achieved the present invention.
The present invention relates to a curable resin composition comprising:
(A) at least one aromatic diallyl compound;
(B) at least one unsaturated functional-group containing compound selected from the group consisting of an acid derivative obtained by replacing all of hydrogen atoms existing in a compound selected from cyanuric acid, isocyanuric acid and those obtained by substituting all of oxygen atoms existing in cyanuric acid and isocyanuric acid by sulfur atoms, with the organic group of the formula (I):
wherein a denotes an integer of from 0 to 2; b denotes 0 or 1; c denotes 0 or 1; d denotes 0 or 1; and R denotes an unsaturated functional group, and an aliphatic group-containing compound having an aliphatic skeleton bonded to at least three unsaturated functional groups;
(C) divinylbenzene; and
(D) at least one polythiol compound having at least two mercapto groups in one molecule.
DETAILED EXPLANATION OF THE INVENTION
The aromatic diallyl compound (A) used in the present invention may be a polybasic acid ester of an ally alcohol which has an aromatic ring. Specific examples of the aromatic diallyl compound (A) include diallyl isophthalate, diallyl orthophthalate and diallyl terephthalate. These are used alone or in combination thereof. Diallyl isophthalate is particularly preferable.
The addition amount of the aromatic diallyl compound (A) is preferably from 1 to 10% by weight, more preferably from 1 to 5% by weight based on the total amount of the components (A) to (D).
The component (B) are an acid derivative or an aliphatic group-containing compound. An unsaturated functional group in the component (B) is a group having a carbon—carbon double bond. Examples of the unsaturated functional group include a vinyl group (CH
2
═CH—), an allyl group, a methallyl group, an acryloyl group and a methacryloyl group.
In the acid derivative among the component (B), the unsaturated functional group R is preferably selected from the group consisting of an allyl group, a methallyl group, an acryloyl group and a methacryloyl group. Three unsaturated functional groups contained in one molecule of the acid derivative (B) are preferably the same.
Examples of the acid derivative (B) include triallyl cyanurate, triallyl thiocyanurate, trimethallyl thiocyanurate, 2-hydroxyethyl cyanurate tris(acrylate), 2-hydroxyethyl cyanurate tris(methacrylate), 2-hydroxyethyl cyanurate tris(allyl carbonate), 2-hydroxyethyl cyanurate tris(methallyl carbonate), triallyl isocyanurate, triallyl isothiocyanurate, trimethallyl isothiocyanurate, 2-hydroxyethyl isocyanurate tris(acrylate), 2-hydroxyethyl isocyanurate tris(methacrylate), 2-hydroxyethyl isocyanurate tris(allyl carbonate) and 2-hydroxyethyl isocyanurate tris(methallyl carbonate). These may be used alone or in combination of thereof.
A compound containing allyl groups as all of the unsaturated functional groups is preferable, and triallyl cyanurate and triallyl isocyanurate are further preferable.
The aliphatic group-containing compound (3) contains at least 3, preferably at least 4, more preferably from 4 to 8 unsaturated functional groups in a molecule. In the aliphatic group-containing compound (B), the unsaturated functional group is bonded directly or indirectly through an intermediate group (e.g. a hetero atom such as oxygen, nitrogen and sulfur) to an al
Tsujimura Kazuya
Yokoyama Katsutoshi
Daiso Co. LTD
Wenderoth , Lind & Ponack, L.L.P.
Zalukaeva Tatyana
LandOfFree
Curable resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Curable resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Curable resin composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3103906