Plastic and nonmetallic article shaping or treating: processes – Direct application of electrical or wave energy to work – Producing or treating porous product
Reexamination Certificate
2000-09-29
2003-05-06
Kuhns, Allan R. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Direct application of electrical or wave energy to work
Producing or treating porous product
C264S041000, C264S050000, C264S053000
Reexamination Certificate
active
06558607
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to porous polymers and solid-state expansion processes using solvents. The processes can be used to make porous films, fibers, tubes, and coatings for use in filters, chromatography and numerous other applications.
BACKGROUND OF THE INVENTION
Porous semicrystalline polymers have a range of important and useful applications. In typical applications, the control of pore structure and purity of the product, bulk mechanical properties, and macroscopic shape are of fundamental importance.
Porous semicrystalline polymers can be produced by crystallization from solution. In the well-known process of thermally induced phase separation (TIPS), the porous material is formed from homogeneous solution by lowering the temperature, inducing crystallization, and/or liquid-liquid phase separation. The TIPS method involves dissolving a polymer in a solvent. The solid product forms from solution, either assuming the shape of the crystallization vessel, or becoming film or sediment at the bottom of the vessel. This method cannot be used to create complicated shapes (e.g. complicated injection molded parts). Complete removal of solvent (e.g., drying) is generally difficult (often a second solvent is used to extract the first solvent) and the surface forces of the solvent can lead to pore collapse during removal. Problems associated with current methods include: inability to control fine pore structure and pore size distribution, lack of mechanical coherency in the product, reliance on hazardous processing solvents, and solvent removal and recovery from the final product. Other methods such as foaming, sintering, stretching, and leaching have also been developed over the years to create porous materials with desired properties.
Increasingly strict environmental legislation has forced many industries to reevaluate their use of hazardous solvents. International agreements such as the Montreal Protocol (1987), the Clean Air Act Amendments (1990), and the Kyoto Summit (1997) have all had as their focus the reduction or elimination of volatile organic compound (VOC) emissions as a way to stop ozone depletion and greenhouse warming. The polymer industry in particular is notorious for its reliance on VOCs, which have been used as monomers, solvents, plasticizers, and cleaning agents in polymer synthesis and processing.
SUMMARY OF THE INVENTION
The invention is based on the discovery that crystallizing constrained polymers from swollen states can lead to porous structure, including open celled, bicontinuous porous structure. Solvents can include supercritical fluids (SCF). After crystallization, from the swollen state the polymers show an increase in volume, a decrease in density, and the overall shape is controlled by the shape before swelling and the processing history. Scanning electron micrographs of the samples show an open cell porous, network.
In one aspect, the invention provides a new process for creating porous polymers, the pore structure and distribution of which can be controlled through material properties and processing parameters. The process is applicable to many different types of polymers. The final shape of the porous polymer is determined by shaping methods such as extrusion, blow molding, fiber spinning, and injection molding applied prior to the process, as well as by material properties, and further processing history.
In another aspect, the invention provides porous polymeric materials with open pore structures having new morphologies, improved pore size distribution, and improved mechanical strength. These porous polymers are produced in such a way that all interior surfaces are extremely clean, and do not contain residual materials (such as residual solvents, for example) which are typically introduced by previously used processes. This property can reduce or eliminate the need for post-processing cleaning, and can make the porous polymers amenable to further processing such as surface modification, surface functionalization, or biological and medical applications.
The invention, in some embodiments, further provides porous materials of increased strength, by virtue of a crosslinked structure. The shaping of polymers before processing is also substantially maintained during processing, which results in porous materials having a wide variety of shapes that were previously unavailable.
In one aspect the invention provides a method for producing porous structure in a polymer. The method includes shaping a polymer; constraining the structure of at least a portion of the polymer; melting the polymer; contacting the melted, constrained polymer with a solvent under conditions, and for a time sufficient to cause at least partial swelling of the polymer; crystallizing the swollen polymer, and removing the solvent, to yield a porous polymer. The solvent can be a supercritical fluid, such as propane. Some of the steps can be performed simultaneously. The shaping can be by reactive extrusion. The structure of at least a portion of the polymer can be constrained by crosslinking, for example, as achieved by radiation, by reacting functional groups on the polymer, by chemical radical-initiation, or by photochemical reaction. The method can also include extracting an uncrosslinked portion of the polymer from the crosslinked portion of the polymer with a solvent before crystallization to produce a solution comprising an uncrosslinked portion of polymer. This method can also include extracting substantially the entire uncrosslinked portion of the polymer from the crosslinked polymer, and can also include impregnating the crosslinked portion of the polymer with a further material, wherein the further material penetrates the interior of the crosslinked portion of the polymer, and can also include impregnating the crosslinked portion of the polymer with a further material, wherein the further material remains substantially on the exterior of the crosslinked portion of the polymer. The further material can include a polymer, a cell culture, a pharmaceutically active material, a lubricant, or a reactive crosslinking material. The method can also include replacing the solution comprising uncrosslinked portion of polymer with solvent containing substantially no uncrosslinked portion of polymer.
In another aspect, the invention provides a method for making a shaped material. The method includes allowing a solidifiable material to impregnate the interior of a porous structure; solidifying the solidifiable material; and removing the porous structure to produce a shaped material. The porous structure can have pore sizes between about 0.01 &mgr;m and 100 &mgr;m. The solidifiable material can be an inorganic sol, such as a metal alkoxide or metalloid alkoxide.
In another aspect, the invention provides a porous crosslinked polymer having pore diameters from about 0.01 &mgr;m to about 100 &mgr;m, and having a open-cell, bicontinuous structure. This porous crosslinked polymer can form part of a tissue scaffold, a catalyst substrate, a liquid or gas filter.
In another aspect, the invention provides a method for growing cells including providing a porous crosslinked polymeric scaffold; at least a portion of the surface of which is coated with cells; and allowing the cells to grow for a time, and under conditions, sufficient to produce new cell. The cells produce a material excreted into an extracellular matrix, or the cells and new cells form tissue.
In another aspect, the invention provides a battery separator comprising a porous crosslinked polymer.
In another aspect, the invention provides a porous polymer having pore sizes between about 0.1 &mgr;m and 100 &mgr;m. The volume porosity can be of from about 1% to about 90%, and can have an open-celled, bicontinuous pore structure.
The invention provides a number of advantages. The process is markedly simpler and more cost efficient than previous methods. Standard polymers can be employed in the process, rather than only high cost specialty polymers required of prior processes. The shaping of the polymer can be carried
Gappert Griffin
Winter H. Henning
Fish & Richardson P.C.
Kuhns Allan R.
University of Massachusetts
LandOfFree
Crystallization of constrained polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Crystallization of constrained polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crystallization of constrained polymers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3051804