Crystalline tiotropium bromide monohydrate, processes for...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S089000, C546S091000, C514S291000, C514S304000

Reexamination Certificate

active

06777423

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a crystalline monohydrate of (1&agr;,2&bgr;,4&bgr;,5&agr;,7&bgr;)-7-[(hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0
2,4
]nonane bromide, processes for the preparation thereof, as well as the use thereof for preparing a pharmaceutical composition, particularly for preparing a pharmaceutical composition having an anticholinergic activity.
The compound (1&agr;,2&bgr;,4&bgr;,5&agr;,7&bgr;)-7-[(hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0
2,4
]nonane bromide is known from European Patent Application EP 418 716 A1 and has the following chemical structure:
The compound has valuable pharmacological properties and is known by the name tiotropium bromide (BA679). Tiotropium bromide is a highly effective anticholinergic and can therefore provide therapeutic benefit in the treatment of asthma or chronic obstructive pulmonary disease (COPD).
Tiotropium bromide is preferably administered by inhalation. Suitable inhalable powders packed into appropriate capsules (inhalettes) may be used. Alternatively, it may be administered by the use of suitable inhalable aerosols. These also include powdered inhalable aerosols which contain, for example, HFA134a, HFA227 or mixtures thereof as propellant gas.
The correct manufacture of the abovementioned compositions which are suitable for use for the administration of a pharmaceutically active substance by inhalation is based on various parameters which are connected with the nature of the active substance itself. Without being restrictive, examples of these parameters are the stability of effect of the starting material under various environmental conditions, stability during production of the pharmaceutical formulation and stability in the final medicament compositions. The pharmaceutically active substance used for preparing the abovementioned pharmaceutical compositions should be as pure as possible and its stability in long-term storage must be guaranteed under various environmental conditions. This is absolutely essential to prevent the use of pharmaceutical compositions which contain, in addition to the actual active substance, breakdown products thereof, for example. In such cases the content of active substance in the capsules might be less than that specified.
The absorption of moisture reduces the content of pharmaceutically active substance on account of the weight gain caused by the uptake of water. Pharmaceutical compositions with a tendency to absorb moisture have to be protected from damp during storage, e.g., by the addition of suitable drying agents or by storing the medicament in a damp-proof environment. In addition, the uptake of moisture can reduce the content of pharmaceutically active substance during manufacture if the medicament is exposed to the environment without being protected from damp in any way.
Uniform distribution of the medicament in the formulation is a critical factor, particularly when the medicament has to be given in low doses. To ensure uniform distribution, the particle size of the active substance can be reduced to a suitable level, e.g., by grinding. Another aspect which is important in active substances to be administered by inhalation, e.g., by means of a powder, arises from the fact that only particles of a certain size can be taken into the lungs by inhalation. The particle size of these lung-bound particles (inhalable fraction) is in the sub-micron range. In order to obtain active substances of a corresponding particle size, a grinding process (so-called micronizing) is again required.
Since breakdown of the pharmaceutically active substance as a side effect of the grinding (or micronizing) has to be avoided as far as possible, in spite of the hard conditions required during the process, it is absolutely essential that the active substance should be highly stable throughout the grinding process. Only if the active substance is sufficiently stable during the grinding process is it possible to produce a homogeneous pharmaceutical formulation which always contains the specified amount of active substance in reproducible manner.
Another problem which may arise in the grinding process for preparing the desired pharmaceutical formulation is the input of energy caused by this process and the stress on the surface of the crystals. This may in certain circumstances lead to polymorphous changes, to a change in the amorphous configuration or to a change in the crystal lattice. Since the pharmaceutical quality of a pharmaceutical formulation requires that the active substance should always, have the same crystalline morphology, the stability and properties of the crystalline active substance are subject to stringent requirements from this point of view as well.
The stability of a pharmaceutically active substance is also important in pharmaceutical compositions for determining the shelf life of the particular medicament; the shelf life is the length of time during which the medicament can be administered without any risk. High stability of a medicament in the abovementioned pharmaceutical compositions under various storage conditions is therefore an additional advantage for both the patient and the manufacturer.
Apart from the requirements indicated above, it should be generally borne in mind that any change to the solid state of a pharmaceutical composition which is capable of improving its physical and chemical stability gives a significant advantage over less stable forms of the same medicament.
The aim of the invention is thus to provide a new, stable crystalline form of the compound tiotropium bromide which meets the stringent requirements imposed on pharmaceutically active substances as mentioned above.
DETAILED DESCRIPTION OF THE INVENTION
It has been found that, depending on the choice of conditions which can be used when purifying the crude product obtained after industrial manufacture, tiotropium bromide occurs in various crystalline modifications.
It has been found that these different modifications can be deliberately produced by selecting the solvents used for the crystallization as well as by a suitable choice of the process conditions used in the crystallization process.
Surprisingly, it has been found that the monohydrate of tiotropium bromide, which can be obtained in crystalline form by choosing specific reaction conditions, meets the stringent requirements mentioned above and thus solves the problem on which the present invention is based. Accordingly the present invention relates to crystalline tiotropium bromide monohydrate.
According to another aspect, the present invention relates to a process for preparing crystalline hydrates of tiotropium bromide. This preparation process is characterized in that tiotropium bromide, which has been obtained for example by the method disclosed in EP 418 716 A1, is taken up in water, the mixture obtained is heated and finally the hydrates of tiotropium bromide are crystallized while cooling slowly.
The present invention further relates to crystalline hydrates of tiotropium bromide which may be obtained by the above method.
One aspect of the present invention relates to a process for preparing crystalline tiotropium bromide monohydrate which is described in more detail hereinafter.
In order to prepare the crystalline monohydrate according to the present invention, tiotropium bromide, which has been obtained for example according to the method disclosed in EP 418 716 A1, has to be taken up in water and heated, then purified with activated charcoal and, after removal of the activated charcoal, the tiotropium bromide monohydrate has to be crystallized out slowly while cooling gently.
The method described below is preferably used according to the invention.
In a suitably dimensioned reaction vessel the solvent is mixed with tiotropium bromide, which has been obtained, for example, according to the method disclosed in EP 418 716 A1. 0.4 kg to 1.5 kg, preferably 0.6 kg to 1 kg, most preferably about 0.8 kg of water a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Crystalline tiotropium bromide monohydrate, processes for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Crystalline tiotropium bromide monohydrate, processes for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crystalline tiotropium bromide monohydrate, processes for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3312541

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.