Crystalline protease and method for producing same

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C117S927000, C435S222000, C435S223000

Reexamination Certificate

active

06207437

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is related to the crystallization of protease enzyme at a temperature greater than 10° C. More particularly, the present invention relates to selective crystallization of protease enzyme in an aqueous solution using sodium sulfate.
Intensive research efforts have been directed to the precipitation and crystallization of enzymes as a means of purification and preparation of enzyme products. For example, in U.S. Pat. No. 4,659,667, a process is disclosed for the recovery of an enzyme from solution by concentrating to supersaturation the enzyme-containing solution at pH near the isoelectric point of the enzyme, inducing crystallization and recovering the crystallized final product. Inducing crystallization is achieved by allowing the enzymes to spontaneously crystallize upon concentration or by seeding, sound, stirring or scratching the inner surface of the container. Crystallization of alpha-amylase is exemplified.
In PCT Publication No. WO 89/08703, a process is described for the crystallization of subtilisin by adding a halide salt, such as sodium chloride or calcium chloride, to a concentrated subtilisin solution of at least about 40 grams per liter.
In EP 506,866, a method for the crystallization of enzymes is disclosed which is characterized by using as a starting material an aqueous solution containing liquid with a relatively high enzyme purity and a concentration of enzyme of about at least 5 grams per liter and adding as a crystallization agent an easily soluble salt of the non-halide type to a concentration which is considerably smaller than the amount necessary to precipitate the enzymes in an amorphous form. Crystallization of certain subtilisin enzymes at temperatures up to 30° C. is exemplified. Sodium sulfate is used to help purify the protease product but not for crystallization.
In spite of these advances in the field of enzyme crystallization, inexpensive and efficient crystallization of proteases suitable for large scale production has remained problematic in industry. The ability to use room temperature and an inexpensive salt for industrial scale crystallization of protease would represent a large savings and be of great importance to the industry.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide for a simple and low-cost method which crystallizes proteases.
One embodiment of the present invention provides a method for the crystallization of protease enzyme comprising (a) preparing an aqueous solution containing the protease enzyme; and (b) adding to the aqueous solution a salt comprising sodium sulfate, wherein said step (b) is carried out at a temperature between 10° C. and 60° C.
Through the practice of the present invention, it is possible to obtain in short periods of time a highly purified crystalline protease product which has exceptional yield characteristics. In fact, by optimizing conditions according to the present invention, it is often possible to obtain consistent yields of greater than 50%, and in a particularly preferred embodiment, yields of greater than 70-80% in a period of five hours. This result is of great value to the industry.
Yet another advantage of the present invention is that the crystallization process occurs very quickly. In contrast to many prior art processes which often require as much as 2-3 weeks for the crystallization of enzyme, the instant invention produces a high yield of highly purified protease crystals in as little as 5 hours.
Further, the method of the present invention is easily scaled to an industrial level.
DETAILED DESCRIPTION OF THE INVENTION
“Protease” or “protease enzyme” means proteins which have proteolytic activity and are generally found in enzyme class 3.4. Proteases which can be crystallized according to the present invention include serine proteases, thiol proteases, carboxyl or acid proteases, and metalloproteases.
In a preferred embodiment of the present invention, a method for the crystallization of protease enzyme is provided comprising preparing an aqueous solution containing said protease enzyme and adding to said aqueous solution a salt comprising sodium sulfate, wherein the aqueous solution is at a temperature of between about 10° C. and 60° C.
The protease enzyme of the invention can be obtained from any protease producing microorganism. Proteases which are preferably crystallized according to the present invention are derived from bacterial, fungal, plant and animal sources. More preferably, the bacterial proteases are derived from Bacillus sp., including
Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus licheniformis, Bacillus lentus
, Thermomonospora sp., Pseudomonas sp., Clostridium sp., Streptomyces sp. and Micrococcus sp. As used herein, the term “Bacillus” or “Bacillus sp.” refers to any bacterial strains which have previously been classified as Bacillus or which are currently classified as Bacillus. Preferred fungal proteases can be derived from Aspergillus sp. or Trichoderma sp. Preferred animal proteases are derived from bovine sp.
Genetically modified proteases which are derived from a DNA sequence in which one or more of the amino acids of the protease have been deleted, replaced or otherwise manipulated are also considered within the scope of the invention. Such modified proteases are described in, for example, PCT Publication No. WO 95/10615 and U.S. Pat. No. 5,185,258.
The fermentation procedures for culturing cells and for production of protease are known per se in the art. For example, protease enzyme can be produced either by solid or submerged culture, including batch, fed-batch and continuous-flow processes. The collection and purification of the protease enzyme from the fermentation broth can also be effected by procedures known per se in the art.
The aqueous solution which acts as starting material for the method according to the invention is derived from the fermentation broth produced by the fermentation of an appropriate microorganism. The fermentation broth will generally contain cellular debris including cells, various suspended solids and other biomass contaminants, as well as the desired protease product, which are preferably removed from the fermentation broth by means known in the art. Suitable processes for such removal include conventional solid-liquid separation techniques such as, e.g., centrifugation, filtration, dialysis, microfiltration, rotary vacuum filtration, or other known processes, to produce a cell-free filtrate. While it is contemplated as within the scope of the invention to crystallize the protease enzyme either directly from the fermentation broth or from the cell-free filtrate, it is preferable to further concentrate the fermentation broth or the cell free filtrate prior to crystallization using techniques such as ultrafiltration, evaporation, or precipitation.
It has long been known in the art that certain constituents, if included in a culture medium, will result in difficulty in crystallization of the component enzymes. For this reason, it is often advantageous to further purify the filtered fermentation broth to remove impurities which may interfere with crystallization by, for example, subjecting the filtered broth to column purification. Additionally, it is possible to limit the amount of such impurities by controlling the culture medium in which the microorganism is grown. For example, as described in Northrup et al. (1948) Crystalline Enzymes, Columbia University Press, p. 254, mucin-like substances, e.g., polysaccharides, are often detrimental to crystallization processes. Thus, by eliminating such polysaccharide components from the prefermentation culture medium or purifying such components from a fermentation broth, it is possible to improve the success of the subsequent crystallization. Alternatively, these substances can be removed by treatment of the filtrate with a strong acid, copper hydroxide, alcohol or acetone. Preferably, aluminum sulfate is used in purifying protease-containing fermentation broths in order to facilitate crystallization.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Crystalline protease and method for producing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Crystalline protease and method for producing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crystalline protease and method for producing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2513217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.