Cryptography – Particular algorithmic function encoding
Reexamination Certificate
2006-11-14
2006-11-14
Moazzami, Nasser (Department: 2136)
Cryptography
Particular algorithmic function encoding
C380S030000
Reexamination Certificate
active
07136484
ABSTRACT:
Apparati, methods, and computer readable media for enabling two parties (1,2) to exchange encrypted messages, exchange symmetric cryptographic keys, and perform functions of public key cryptography. First and second key exchange algorithms use commuting pairs of subsets of a monoid. The first key exchange algorithm has four principal embodiments. In three of the embodiments, a set of matrices over a hyperbolic ring is used as the monoid. In the fourth embodiment, a braid group is used as the monoid. The second key exchange algorithm has five principal embodiments. In four of the embodiments, a set of matrices over a hyperbolic ring is used as the monoid. In the fifth embodiment, a braid group is used as the monoid.
REFERENCES:
patent: 4078152 (1978-03-01), Tuckerman, III
patent: 4195200 (1980-03-01), Feistel
patent: 4200770 (1980-04-01), Hellman et al.
patent: 4218582 (1980-08-01), Hellman et al.
patent: 4405829 (1983-09-01), Rivest et al.
patent: 4723284 (1988-02-01), Munck et al.
patent: 5020105 (1991-05-01), Rosen et al.
patent: 5241599 (1993-08-01), Bellovin et al.
patent: 5289397 (1994-02-01), Clark et al.
patent: 5396558 (1995-03-01), Ishiguro et al.
patent: 5479513 (1995-12-01), Protopopescu et al.
patent: 5627893 (1997-05-01), Demytko
patent: 5633929 (1997-05-01), Kaliski, Jr.
patent: 5751811 (1998-05-01), Magnotti et al.
patent: 5787178 (1998-07-01), Schwenk
patent: 5812072 (1998-09-01), Masters
patent: 5889865 (1999-03-01), Vanstone et al.
patent: 5966444 (1999-10-01), Yuan et al.
patent: 6081597 (2000-06-01), Hoffstein et al.
patent: 6108783 (2000-08-01), Krawczyk et al.
patent: 6111952 (2000-08-01), Patarin
patent: 6243466 (2001-06-01), Young et al.
patent: 6286101 (2001-09-01), Suzuki
patent: 6298137 (2001-10-01), Hoffstein et al.
patent: 6385725 (2002-05-01), Baum-Waidner
patent: 6415032 (2002-07-01), Doland
patent: 6430588 (2002-08-01), Kobayashi et al.
patent: 6446205 (2002-09-01), Lenstra
patent: 6493449 (2002-12-01), Anshel et al.
patent: 6651167 (2003-11-01), Terao et al.
patent: 6666381 (2003-12-01), Kaminaga et al.
patent: 6782100 (2004-08-01), Vanstone et al.
patent: 6986054 (2006-01-01), Kaminaga et al.
patent: 2001/0010077 (2001-07-01), McGregor et al.
patent: 2001/0037457 (2001-11-01), Inada
patent: 2002/0027986 (2002-03-01), Brekne
patent: 2003/0223579 (2003-12-01), Kanter et al.
patent: 2005/0157871 (2005-07-01), Komano et al.
patent: 2005/0175173 (2005-08-01), Nakamura et al.
patent: 2005/0175174 (2005-08-01), Kahl
patent: WO 9944324 (1999-09-01), None
Ko et al., New Public-Key Cryptosystem Using Braid Groups, 2000, Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology, Lecture Notes In Computer Science; vol. 1880, pp. 166-183.
Anshel et al., An Algebraic Method for Public-Key Cryptography, 1999, Mathematical Research Letters.
Menezes et al., Handbook of Applied Cryptography, 1996, CRC Press, chaper 12.
Neal R Wagner, Searching for Public-Key Cryptosystems, 1984, IEEE Symposium on Security and Privacy.
Neal Wagner, A Public-Key Cryptosystem Based on the World Problem, 1985, Crypto 84, pp. 19-36.
Computer Letter, Oct. 15, 2001, pp. 1-4, vol. 17, No. 34, published by Technologic Partners, U.S.A.
Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman; “The NTRU Signature Scheme: Theory and Practice”;[online], [retrieved on Oct. 25, 2001]. Retrieved from the Internet <URL: http:/
tru.com/technology/tech.technical.htm.
Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman; “NTRU: A Ring Based Public Key Cryptosystem” [online], [retrieved on Oct. 25, 2001]. Retrieved from the Internet <URL: http:/
tru.com/technology/tech.technical.htm.
NTRU Technical center, [online], [retrieved on Oct. 25, 2001]. Retrieved from the Internet <URL: http:/
tru.com/technology/tech.technical.htm, 3 pages.
Cervetti David Garcia
Girard & Equitz LLP
Moazzami Nasser
Silicon Image Inc.
LandOfFree
Cryptosystems using commuting pairs in a monoid does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cryptosystems using commuting pairs in a monoid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cryptosystems using commuting pairs in a monoid will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3703368