Cryocooler interface sleeve for a superconducting magnet and...

Refrigeration – Gas compression – heat regeneration and expansion – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S259200, C165S185000

Reexamination Certificate

active

06438967

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains generally to coupling assemblies for thermally connecting a cryocooler with an apparatus that is to be cooled. More particularly, the present invention pertains to a method for cooling a superconducting device by using a sleeve assembly which thermally interconnects two stages of a cryocooler with two different components of a superconducting device simultaneously. The present invention particularly, though not exclusively, pertains to a method for using a sleeve assembly to thermally disconnect the pulse tube, two stage cryocooler from a superconducting device without compromising the thermal condition of the superconducting device.
BACKGROUND OF THE INVENTION
It is well known that superconductivity is accomplished at extremely low temperatures. Even the so-called high temperature superconductors require temperatures which are as low as approximately twenty degrees Kelvin. Other not-so-high temperature superconductors require temperatures which are as low as approximately four degrees Kelvin.
In any case, there are numerous specialized applications for using superconducting devices that require low temperatures. One specialized application, for example, involves medical diagnostic procedures using magnetic resonance imaging (MRI) techniques. When used for medical diagnosis, MRI techniques require the production of a very strong and substantially uniform magnetic field. If superconducting magnets are used to generate this strong magnetic field, some type of refrigeration apparatus will be required to attain the low operational temperatures that are necessary.
To attain the low operational temperatures that are necessary for a superconducting device, the refrigeration apparatus typically includes separate cryogenic units or cryocoolers that are thermally connected with the superconducting device. During operation of the superconducting device, such a connection is essential. There are times, however, when it is desirable for the cryocooler to be selectively disconnected or disengaged from the superconducting device. For example, during repair or routine maintenance of the cryocooler in a refrigeration apparatus, it is much easier to work on the cryocooler when it is disconnected from the superconducting device it has been cooling. Importantly, when so disengaged, the cryocooler can be warmed to room temperature for servicing. Any disengagement of the cryocooler from the superconducting device, however, must allow for a reengagement. Further, it is desirable that the superconducting device be held at a very low temperature during disengagement.
As it is known to persons skilled in the pertinent art, new generation cryocoolers, such as “Pulse Tubes”, cannot be “gutted” out and rebuilt as can the older generation cryocoolers. Instead, these pulse tube cryocoolers must either be entirely replaced or warmed to room temperature for servicing. It is, therefore, necessary for these new generation cryocoolers to use a refrigeration apparatus or a sleeve to cool a superconducting device. Because the entire pulse tube needs to be removed for servicing, the pulse tube cryocoolers cannot be directly and permanently bolted to the sleeve and, thus, the superconducting device. Further, the pulse tube internals cannot be removed independently as they can in many Gifford McMahon (GM) two stage cryocoolers.
For an effective thermal connection, it is known that the efficacy of heat transfer from one body to another body is dependent on several factors. More specifically, the amount of heat (Q) that is conductively transferred through a solid body or conductively transferred from one body to another body through a gas or liquid can be mathematically expressed as:

Q=k
(
A/L
)&Dgr;
T
In the above expression, k is the coefficient of thermal conductivity; A is the solid bodies cross-sectional area, or the surface area in contact between the two bodies for gas or liquid conduction; L is the solid bodies thermal length or the gap distance between the bodies; and &Dgr;T is the temperature differential across the solid or between the two bodies. From this expression, it can be appreciated that in order to effectively cool one body (e.g. a superconducting device) with another body (e.g. a cryocooler) the transfer of heat, Q, must be accomplished. When the temperature differential between the bodies is desired to be very low, and for a given coefficient of thermal conductivity, it is necessary that the ratio of A/L be sufficiently high.
For any two separate bodies that are in contact with each other, even though they may be forced together under very high pressures, there will always be some average gap distance, L, between the interfacing cross-sectional surface areas of the bodies. For the case wherein there is a vacuum in the gaps, the gaps can create undesirable thermal insulators. Accordingly, it may be beneficial to have these gaps filled with a gas, such as helium. If this is done, heat transfer between the bodies in contact can result from a) solid conduction where there is actual contact between the bodies; b) molecular/gas conduction across the helium-filled gaps; and possibly c) liquid conduction in gaps where the gas has liquefied.
In light of the above, it is an object of the present invention to provide a method for cooling two components of a superconducting device by using a sleeve assembly that thermally interconnects two stages of a pulse tube cryocooler with the superconducting device. Another object of the present invention is to provide a method for cooling a superconducting device by using a sleeve assembly which allows the pulse tube, two stage cryocooler to be thermally disengaged from the superconducting device while the very low temperature of the superconducting device is substantially maintained. Still another object of the present invention is to provide a method for cooling a superconducting device which is effectively easy to implement and comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
The present invention is directed to a method for cooling a superconducting device by using a sleeve assembly which thermally interconnects a pulse tube, two stage cryocooler with a superconducting device. For the present invention, the sleeve assembly has a heat transfer cylinder, a heat transfer receptacle and a midsection which interconnects the heat transfer cylinder with the heat transfer receptacle.
In more detail, the midsection of the sleeve assembly is hollow and elongated and defines a passageway between the heat transfer cylinder and the heat transfer receptacle. The heat transfer cylinder of the present invention is also hollow and is annular-shaped, having an inner surface and an outer surface. The heat transfer receptacle is formed with a recess and has an inner surface and an outer surface. Importantly, the inner surface of the heat transfer receptacle that defines the recess is tapered. Both the heat transfer cylinder and heat transfer receptacle are preferably made of copper, aluminum or any other high thermal conductivity material. Furthermore, the midsection of the sleeve assembly is preferably made of stainless steel or any other low thermal conductivity material known in the art.
The structure of the sleeve assembly is dimensioned for the engagement with a cryocooler which includes a cooling element and a tapered cooling probe. As contemplated for the present invention, the cryocooler is moveable relative to the sleeve assembly between a first configuration wherein the cryocooler is engaged with the sleeve assembly, and a second configuration wherein the cryocooler is disengaged from the sleeve assembly. Specifically, the two stages of the cryocooler will thermally engage and disengage with the two components of the superconducting device simultaneously through the sleeve assembly.
In operation, the sleeve assembly is engaged with the cryocooler when the cryocooler is juxtaposed with the sleeve assembly to establish thermal communication between the cryocooler and the superconducting devi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cryocooler interface sleeve for a superconducting magnet and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cryocooler interface sleeve for a superconducting magnet and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cryocooler interface sleeve for a superconducting magnet and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2962515

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.