Stock material or miscellaneous articles – Hollow or container type article – Polymer or resin containing
Reexamination Certificate
2001-01-30
2004-01-20
Nolan, Sandra M. (Department: 1772)
Stock material or miscellaneous articles
Hollow or container type article
Polymer or resin containing
C428S321500, C428S334000
Reexamination Certificate
active
06680095
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to crosslinked fluoropolymer compositions for use as release layer coatings for fuser and transport belts used in electrostatographic printing apparatuses.
2. Description of Related Art
In a typical electrostatographic reproducing apparatus, a light image of an original to be copied is recorded in the form of an electrostatic latent image upon a photosensitive member and the latent image is subsequently rendered visible by the application of electroscopic thermoplastic resin and pigment particles which are commonly referred to as toner. The visible toner image is then in a loose powdered form and can be easily disturbed or destroyed. The toner image is usually fixed or fused upon a support which may be the photosensitive member itself or other support sheet such as plain paper.
The use of thermal energy for fixing toner images onto a support member is well known. To fuse electroscopic toner material onto a support surface permanently by heat, it is usually necessary to elevate the temperature of the toner material to a point at which the constituents of the toner material coalesce and become tacky. This heating causes the toner to flow to some extent into the fibers or pores of the support member. Thereafter, as the toner material cools, solidification of the toner causes the toner to be firmly bonded to the support.
Typically, the thermoplastic resin particles are fused to the substrate by heating to a temperature of between about 90° C. to about 200° C. or higher depending upon the softening range of the particular resin used in the toner. It is undesirable, however, to increase the temperature of the substrate substantially higher than about 250° C. because of the tendency of the substrate to discolor at such elevated temperatures, particularly when the substrate is paper.
Several approaches to thermal fusing of electroscopic toner images have been described. These methods include providing the application of heat and pressure substantially concurrently by various means, such as a roll pair maintained in pressure contact, a belt member in pressure contact with a roll, and the like. Heat may be applied by heating one or both of the rolls, plate members or belt members. The fusing of the toner particles takes place when the proper combination of heat, pressure and contact time are provided. The balancing of these parameters to bring about the fusing of the toner particles is well known in the art, and can be adjusted to suit particular machines or process conditions.
During operation of a fusing system in which heat is applied to cause thermal fusing of the toner particles onto a support, both the toner image and the support are passed through a nip formed between the roll pair or plate or belt members. The concurrent transfer of heat and the application of pressure in the nip affects the fusing of the toner image onto the support. It is important in the fusing process that no offset of the toner particles from the support to the fuser member take place during normal operations. Toner particles that offset onto the fuser member may subsequently transfer to other parts of the machine or onto the support in subsequent copying cycles, thus increasing the background or interfering with the material being copied there. The referred to “hot offset” occurs when the temperature of the toner is increased to a point where the toner particles liquefy and a splitting of the molten toner takes place during the fusing operation with a portion remaining on the fuser member. The hot offset temperature or degradation of the hot offset temperature is a measure of the release property of the fuser roll, and accordingly it is desired to provide a fusing surface which has a low surface energy to provide the necessary release. To ensure and maintain good release properties of the fuser roll, it has become customary to apply release agents to the fuser roll during the fusing operation. Typically, these materials are applied as thin films of, for example, silicone oils to prevent toner offset.
One of the earliest and most successful fusing systems involved the use of silicone elastomer fusing surfaces, such as a roll with a silicone oil release agent which could be delivered to the fuser roll by a silicone elastomer donor roll. The silicone elastomers and silicone oil release agents used in such systems are described in numerous patents and fairly collectively illustrated in U.S. Pat. No. 4,777,087 to Heeks et al.
While highly successful in providing a fusing surface with a very low surface energy to provide excellent release properties to ensure that the toner is completely released from the fuser roll during the fusing operation, these systems suffer from a significant deterioration in physical properties over time in a fusing environment. In particular, the silicone oil release agent tends to penetrate the surface of the silicone elastomer fuser members resulting in swelling of the body of the elastomer causing major mechanical failure including debonding of the elastomer from the substrate, softening and reduced toughness of the elastomer causing it to chunk out and crumble, contaminating the machine and providing non-uniform delivery of release agent. Furthermore, as described in U.S. Pat. No. 4,777,087, additional deterioration of physical properties of silicone elastomers results from the oxidative crosslinking, particularly of a fuser roll at elevated temperatures.
A more recent development in fusing systems involves the use of fluoroelastomer surfaces as fuser members which have a surface with a metal containing filler, which interact with polymeric release agents having functional groups. Such fusing systems, fusing members and release agents, are described in U.S. Pat No. 4,264,181 to Lentz et al. U.S. Pat. No. 4,257,699 to Lentz and U.S. Pat. No. 4,272,179 to Seanor. Typically, the fluoroelastomers used are (1) copolymers of vinylidenefluoride, and hexafluoropropylene, and (2) terpolymers of vinylidenefluororide, hexafluoropropylene and tetrafluoroethylene. Commercially available materials include: Viton™ E430, Viton GF and other Viton designations which are trademarks of E.I. Dupont deNemours, Inc. as well as the Fluorol™ materials of 3M Company. The preferred curing system for these materials is a nucleophilic system with a bisphenol crosslinking agent to generate a covalently crosslinked network polymer formed by the application of heat following base dehydrofluorination of the copolymer. Exemplary of such fuser member is an aluminum base member with a poly(vinyldenefluoride-hexafluoropropylene) copolymer cured with a bisphenol curing agent and having lead oxide filler dispersed therein, also utilizing a mercapto or amino functional polyorganosiloxane oil as a release agent. In those fusing processes, the polymeric release agents have functional groups (also designated as chemically reactive functional groups) which interact with the metal containing filler dispersed in the elastomer or resinous material of the fuser member surface to form a thermally stable film which releases thermoplastic resin toner and which prevents the thermoplastic resin toner from contacting the elastomer material itself. The metal oxide, or other suitable metal compound filler dispersed in the elastomer or resin upon the fuser member surface interacts with the functional groups of the polymeric release agent. Preferably, the metal containing filler materials do not cause degradation or have any adverse effect upon the polymer release agent having functional groups. Because of this reaction between the elastomer having a metal containing filler and the polymeric release agent having functional groups, excellent release and the production of high quality copies are obtained even at high rates of speed of electrostatographic reproducing machines.
While these fluoroelastomers have excellent mechanical and physical properties in that they have a long wearing life thereby maintaining toughness and strength over time in a fusing environmen
Badesha Santokh S.
Gervasi David J.
Heeks George J.
Henry Arnold W.
Riehle George A.
Nolan Sandra M.
Perman & Green LLP
Xerox Corporation
LandOfFree
Crosslinking of fluoropolymers with polyfunctional siloxanes... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Crosslinking of fluoropolymers with polyfunctional siloxanes..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crosslinking of fluoropolymers with polyfunctional siloxanes... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3189560