Crosslinkers based on dibenzalacetone derivatives

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S397000, C564S446000, C564S455000, C564S134000, C564S157000, C564S152000, C568S860000, C525S055000, C525S185000, C525S390000, C525S416000, C525S452000, C525S509000, C525S523000, C525S540000

Reexamination Certificate

active

06194615

ABSTRACT:

BACKGROUND OF THE INVENTION
Dibenzalacetone derivatives are typically prepared by the reaction of two molecules of a benzaldehyde derivative with one molecule of acetone usually under basic conditions. Aldol reactions of this type are known and specifically the reaction of methyl p-formylbenzoate with acetone to provide 1,5-bis-(4′-carbomethoxyphenyl)-1,4-pentadien-3-one has been previously described by Blount and Zoeller in U.S. Pat. Nos. 5,025,086, 4,965,399, and 4,923,958.
Hydrogenation of the dibenzalacetone backbone (the pentadienone unit) with either homogeneous or heterogeneous catalysts provides for a 3-pentanone or 3-pentanol structure which is now of particular interest for developing polyfunctional derivatives which can be useful in the preparation of coatings, particularly as crosslinkers. Only in U.S. Pat. No. 5,025,086 does Blount and Zoeller describe a hydrogenation process to prepare the cycloaliphatic derivatives of dibenzalacetone; more specifically 1,5-bis-(4′-carbomethoxycyclohexyl)-3-pentanol and 1,5-bis-(4′-carbomethoxycyclohexyl)-3-pentanone.
In the cited references, the uses of the dibenzalacetone derivatives were limited to incorporation into polyester resins with other polyols and polybasic acids commonly known in the art. These dibenzalacetone derivatives cited were not, however, further developed into polyfunctional derivatives which could be used directly as crosslinkers and the types of crosslinkers which could be useful as crosslinkers were not disclosed.
The trifunctional amine derivatives described in the present invention are particularly of interest since the commercial availability of trifunctional amines which contain only primary amines is quite limited. One such trifunctional primary amine is tris-(2-aminoethyl)amine, also refered to as TREN® amine, available from Pressure Chemical Company. This trifunctional amine is quite expensive for most applications used in coatings.
Another use of the dibenzalacetone derivatives described within are for the preparation of poly beta-hydroxyethylamides. Beta-hydroxyethylamides are known and used in the art, particularly in powder coatings. One such commercial product is Primid XL-552® crosslinker available from EMS-Chemie AG.
SUMMARY OF THE INVENTION
The present invention describes novel polyfunctional compounds prepared from dibenzalacetone derivatives useful as crosslinkers in coatings applications. The novel polyfunctional compounds include 1,5-bis-(4′-aminomethyl-cyclohexyl)-3-aminopentane; 1,5-bis-(4′-aminomethylphenyl)-3-aminopentane; 1,5-bis-(4′-hydroxymethylcyclohexyl)-3-pentanol; 1,5-bis-(4′-(bis-2-hydroxyethyl)carboxamidephenyl)-3-(bis-2-hydroxyethyl)aminopentane; and 1,5-bis-(4′-(bis-2-hydroxyethyl)carboxamidecyclohexyl)-3-(bis-2-hydroxyethyl)aminopentane. The scope of this invention covers the novel compounds, their process of preparation, and their use as crosslinkers, reactants and/or curing agents in coatings and related materials.
DETAILED DESCRIPTION OF THE INVENTION
The scope of this invention is intended to cover the composition, process of preparation, and use of novel dibenzalacetone derivatives. The method of preparation of these novel compositions is described further in the following paragraphs and the general synthetic pathway(s) shown below.
The general synthesis of 1,5-bis-(4′-carbomethoxyphenyl)-1,4-pentadien-3-one, 1, has been previously described by Blount and Zoeller in U.S. Pat. No. 5,025,086 and references cited within. Methyl p-formylbenzoate was purchased from Fluka Chemical Company and was used without any further purification. It is from methyl p-formylbenzoate and acetone, that all of the novel compositions described originate.
The synthetic pathway to prepare 1,5-bis-(4′-aminomethylcyclohexyl)-3-aminopentane, 5, can follow two paths. One such path involves the hydrogenation of 1,5-Bis-(4′-carbomethoxyphenyl)-1,4-pentadien-3-one, 1, to 1,5-bis-(4′-carbomethoxycyclohexyl)-3-pentanone, 7, followed by addition of anhydrous or aqueous ammonia at or near ambient to elevated temperatures to provide 1,5-bis-(4′-carboxamidecyclohexyl)-3-iminopentane, 9. The latter product is then reduced to provide the desired trifunctional amine, 5.; as shown below.
The second pathway involves the palladium on carbon hydrogenation of 1 to 1,5-bis-(4′-carbomethoxyphenyl)-3-pentanone, 2, followed by addition of anhydrous or aqueous ammonia at or near ambient to elevated temperatures to provide 1,5-bis-(4′-carboxamidephenyl)-3-iminopentane, 3. The latter product is then reduced to form 1,5-bis-(4′-aminomethylphenyl)-3-aminopentane, 4, a novel trifunctional amine. This amine can further be hydrogenated to form 5, another novel trifunctional amine described above.
The synthetic pathway to prepare 1,5-bis-(4′-hydroxymethylcyclohexyl)-3-pentanol, 8, starts from 1 which is then reduced to form either 1,5-bis-(
4
′-carbomethoxycyclohexyl)-3-pentanol, 6, or 1,5-bis-(4′-carbomethoxycyclohexyl)-3-pentanone, 7, or a mixture of the two. Either or both of 6 and 7 is then reduced using hydride reagents such as lithium aluminum hydride to form the desired trihydroxyl compound, 8.
The 2-hydroxyethylamide compounds, 1,5-Bis-(4′-(bis-2-hydroxyethyl)carboxamidephenyl)-3-(bis-2-hydroxyethyl)aminopentane, 11, and 1,5-Bis-(4′-(bis-2-hydroxyethyl)carboxamidecyclohexyl)-3-(bis-2-hydroxyethyl)aminopentane, 12, originate from the dibenzalacetone derivative 1 as well. The aromatic-based 2-hydroxyethylamide derivative 11 follows the pathway of 2 previously described which is then treated with diethanolamine to form 1,5-bis-(4′-bis-(2-hydroxyethyl)carboxamidephenyl)-3-bis-(2-hydroxyethyl)amino-2-pentene, 10 which is then further reduced to form 11 or 12.
The cycloaliphatic-based 2-hydroxyethylamide, 12, may also follow the pathway through the keto-diester 1,5-Bis-(4′-carbomethoxycyclohexyl)-3-pentanone 7, which is treated with diethanolamine to give 13 which is then reduced to 12.
The trifunctional amines 4 and 5 may act as crosslinkers with polyfunctional monomeric, oligomeric, or polymeric forms of anhydrides, esters, carboxylic acids, isocyanates, carbonates, acetoacetates, alkoxylated melamines, or epoxies to form crosslinked networks of polyamides, ureas, urethanes, acetoacetamides, and the like. The triol, 8, may react with polyfunctional anhydrides, esters, and carboxylic acids to form polyesters; with polyfunctional isocyanates to form urethanes; with polyfunctional carbonates, acetoacetates, epoxies, and with alkoxylated melamines to form crosslinked networks.
The 2-hydroxylethylamides, 11 and 12 may react with polyfunctional esters, anhydrides, or carboxylic acids to form polyesters; polyfunctional isocyanates to form urethanes; and with epoxies, carbonates, acetoacetates, and alkoxylated melamines to form crosslinked networks.
Hydrogenation reactions can be accomplished in the presence of Group VIII metal catalysts such as ruthenium, rhodium, palladium, and platinum deposited on or supported by a catalyst support material such as silica, alumina, carbon, titania, etc. Depending on the selectivity, conversion, and other parameters required, the concentration of catalyst on the support material may differ widely. Additionally, other factors such as the rate of conversion and functional group selectivity can influence the type of catalyst used.
Generally, preferable hydrogenation conditions will be within the range of about 20° to 300° C. and about 50 to 3000 psig hydrogen. The more preferred ranges are about 150° to 250° C. and about 500 to 1500 psig hydrogen. Typically, the hydrogenation reactions are carried out in the presence of an inert organic solvent such as C6 to C12 aromatics, methanol and other alcohols to about 6 carbon atoms, and various esters such as methyl acetate, ethyl acetate, methyl butyrate and the like.
Another type of hydrogenation which is preferred uses copper chromite as a catalyst in an inert solvent. Other catalysts such as Raney nickel can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Crosslinkers based on dibenzalacetone derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Crosslinkers based on dibenzalacetone derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crosslinkers based on dibenzalacetone derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567196

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.