Cross-connect method and apparatus

Electricity: motive power systems – Automatic and/or with time-delay means – Movement – position – or limit-of-travel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870030, C439S046000, C379S271000, C379S291000

Reexamination Certificate

active

06265842

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates generally to automatically controlled matrix switching systems and, more particularly, to methods and apparatus for automatically and selectively providing cross-connect switching functions in a telephone system.
2. Discussion of the Prior Art
In the above-noted U.S. patent application Ser. No. 08/111,770, there is described and illustrated a remotely controlled cross-connect matrix arrangement having particular but not limited application in selectively connecting multiple telephone subscriber pairs to multiple telephone system or central office lines. That system utilizes a unique pick and place mechanism for automatically inserting jumper pins at desired matrix locations to provide service for individual subscribers. Although that pick and place mechanism is effective to perform its intended functions, the mechanism requires three separate motors to position the jumper pin holder along three respective axes to insert and/or remove a jumper pin. The three motor approach is costly and results in a degree of complexity that has now been found to be unnecessary.
It has also been found that the cross-connect matrix approach of the above-referenced prior patent application is ideally suited for performing other important telephone system functions. In particular, telephone facilities that are typically utilized in providing telephone service to a customer include a telephone number, a central office line termination, a cross-connection via a mainframe or cross-connection unit to a cable pair extending via several types of outside plant facilities to a terminal near the customer's home or business, and wiring from the terminal into the home/business and to the telephone. Each of these components must have its own identification code to distinguish it from among thousands of identical components that may or may not be in service. These codes for the various components are specified on a service installation order to inform technicians exactly which components to connect together to provide the overall circuit for the customer. When all of the components have been properly connected and the line tested, the customer can plug his/her telephone into the line and utilize the service.
Telephone companies typically issue orders to disconnect each of these facility connections all along the circuit when a customer moves or the service is otherwise disconnected. Individual components are then returned to the assignment availability list for re-use in response to a subsequent request for service. In recent years, increases in technical labor costs have caused telephone companies to attempt a variety of schemes to reduce that cost by leaving many of the component connections intact when a customer disconnects service, and then using the same connected components for the next customer to occupy the former customer's premises. This method of operation is known by various names throughout the industry such as:
(a) Dedicated Outside Plant (DOP). In this approach the cable pair remains connected from the mainframe in the central office to the serving area interface (i.e., the cross-connection point), to a terminal at the customer's location and on into the home/business. This technique is sometimes called “connect-thru”.
(b) Dedicated Inside Plant (DIP). The office equipment line termination remains connected to the cable pair that served the former customer.
(c) Flow Through. This term is used when service is established for a new customer by reusing all former facilities and no field work or central office work is required.
(d) Soft Dial Tone. This is a recent innovation made possible by stored program controlled switching systems permitting programming of the office equipment terminal that had been used by the previous occupant in a manner to permit the incoming new customer to contact only the telephone business office and emergency 911 even though service has not been officially established at the facility.
All of the foregoing methods require that the facilities to the customer's location be left in place from the customer's connection block in the home/business to the office equipment terminal in the central office. There are tremendous labor savings inherent in these methods of operation. However, as telephone companies have become involved in these processes they have found that there are serious drawbacks and problems not readily apparent in initial plans. Some of these, for the above-described methods include:
1. Dedicated Outside Plant (DOP). The greatest obstacle in DOP is loss of flexibility in utilizing capital investment. Outside plant cable facilities are designed using a multiplying scheme to provide maximum flexibility in utilizing cable pairs. When these pairs are left connected to the central office mainframe, they are unavailable for changes and rearrangements necessary to fully utilize capital investment. The result is an increase in capital requirements for new facilities. A feeder cable pair from a serving area interface to the central office is very expensive; when dedicated to a non-working line, it is not available for use by paying customers, resulting in a waste of capital investment.
2. Dedicated Inside Plant (DIP). There is a tremendous capital penalty involved in leaving the central office equipment connected to the outside cable pair. Central office administrative spares (i.e., operating spares) are designed and provided from specific formulae based on a precise percentage of available lines being idle at any given time. When these office equipment terminals are left connected to the outside plant cable pair, they are unavailable for use as administrative spares and can be assigned only when a customer occupies the dwelling or business where the cable pair is terminated. At any given time there are approximately ten percent of the available lines idle or disconnected in the normal course of business (i.e., people moving in and out of the city, people moving from one home or business to another, new customers, present customers disconnecting service, customers adding lines, etc.). This activity is called “the float” or “churn” in the telephone industry. It is an expensive but necessary part of the telephone business. The average central office line termination currently costs approximately one hundred and fifteen dollars to one hundred and fifty dollars each. When one considers the thousands of lines involved in the DIP method, it becomes apparent that this method is very expensive from a capital utilization point of view. Considerable effort has been expended throughout the industry to resolve the labor versus capital costs impasse. Many companies have indicated that the economic impact of idle capital investment, while having to purchase new terminations for new service, outweighs the cost of making the connections manually.
3. Flow Through. When a decision to stop or not provide DIP is implemented, the “flow through” of service orders is stopped. This, in effect, puts the service order process back where it was before the labor saving plans were implemented, meaning that every service order must be manually processed to establish service. When one considers all the different assignments and cross-connections involved, this obviously is a major problem. Even with fully dedicated outside plant (DOP) and inside plant (DIP), there is another serious obstacle to increasing the labor saving “flow through” of service orders to establish telephone service. This is the problem of identification of the line serving the customer that is just moving in to occupy the premises. Many homes, particularly in rural areas, do not have precise addresses. Many apartment buildings do not precisely identify the apartment location; rather, only the street address of the apartment building is listed, and some carry only the street address plus the floor or story number. Thus, even if such a customer is properly connected through to the central office equipment, the customer has no way

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cross-connect method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cross-connect method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cross-connect method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2448056

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.