Surgery – Instruments – Orthopedic instrumentation
Reexamination Certificate
2000-09-25
2003-01-28
Manahan, Todd E. (Department: 3731)
Surgery
Instruments
Orthopedic instrumentation
C606S051000
Reexamination Certificate
active
06511482
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to the alignment and fixation of bone segments as required for appropriate bone healing, for example after fracture or surgical intervention, and specifically to a device, and the tools needed to install the said device, for the alignment and fixation of cranial bone fragments.
In cases of bone fragmentation where bone fixation is desired, the appropriate alignment of the bone is also a desired result. This is especially true in the cranium, where bone fragmentation can occur as a result of trauma, congenital deformity, or of surgical intervention. In the field of neurosurgery, cranial bone fragments are frequently cut and removed to create defects to allow for access into the cranial cavity and the brain.
The bony cranium is generally regarded to have two surfaces: the outer surface which is characterized by the outer cortex of the bone and is adjacent to the scalp and soft tissue; and the inner surface which is characterized by the inner cortex of the bone and which is adjacent to the cranial cavity and the brain. Between the inner cortex and the outer cortex, which are dense layers of bone, lies the medullary layer which generally consists of soft bone and bone marrow. When a bone fragment is created, a cut between the bone fragment (the primary bone zone) and the remainder of the cranium (the secondary bone zone) is present.
Several methods of alignment and fixation of primary and secondary bone zones are known. Traditional techniques involve the use of several pieces of filament, such as wire, that are tied after being threaded through holes drilled obliquely through the outer cortex to the cut surface of both bone zones. Precise alignment of the two zones can be difficult and the technique can be cumbersome.
Commonly, the zones of bone can be aligned and fixated with a system of plates and screws (U.S. Pat. Nos.: 5,372,598; 5,413,577; and 5,578,036). A plate made of metal or other substance can be fixated to the outer cortex of the primary bone zone with screws whose penetration of the bone can be limited to the outer cortex. With three of more plates attached to the primary bone in such a way that the plates protrude beyond the edges of the primary bone zone, the primary bone zone can be introduced into a defect and aligned to the outer cortex of the secondary bone zone without danger of the primary bone zone falling too deeply into the defect in the secondary bone zone and exerting pressure on the underlying tissue such as the brain. Fixation can then be achieved by employing additional screws fixating the plates to the outer cortex of the secondary bone zone. Plates and screws systems are believed to be the only devices currently in use that allow for the alignment and fixation of the zones, while preventing the primary bone zone from falling below the level of the secondary bone zone without actually introducing a component of the device below the secondary bone zone. Plate and screw systems can be expensive and time consuming to use.
Devices that align the two bone zones by way of compressing them between the two disks positioned along the inner and outer cortex have been described. (Foreign Patents: DE 19603887C2, DE 19634699C1, DE 29812988U1, EP 0787466A1). A pin connects the two disks aligning and securing two bone zones. These devices introduce foreign material that is left below the inner cortex, and they do not protect the underlying tissue from compression during the installation procedure.
Devices that fixate bone zones using friction forces created by a cam without a component that extends below the inner cortex are known and described (Patent DE 19634697C1). These devices also do not protect the brain from compression during the installation procedure.
Intramedulary pins are well known in the orthopedic fields for alignment of long bones. Such pins have also been described for cranial fixation; however, the bone zones can not be aligned in three dimensions with this technique.
There is a need for an alignment and fixation device that is simple and rapid to use, versatile, and ultimately cost effective.
OBJECTS OF THE INVENTION
An important object of the invention is to provide a device and instruments for its use that aligns the one cortex of a primary zone with one cortex of a secondary bone zone without extending to the opposing cortex, and which fixates the bone zones to each other. When used in the field of neurosurgery, the device is applied to the primary bone zone and it aligns the outer cortex of the primary bone zone with the outer cortex of the secondary body zone; it prevents the primary bone zone from entering the cranial cavity; and it provides fixation of the two bone zones. The alignment feature can be used independently from the fixation feature. An example of the use of the alignment feature is in the replacement of a cranial bone fragment which will be held in place by the tissue forces of the scalp, which allows for the bone fragment to be elevated away from the cranial cavity in cases where brain swelling occurs. Fixation can also be applied to attach the alignment device to the bone, using elements alone or in combination such as filaments, screws, rivets, pins, clips, cams, friction or adhesives. The alignment aspect of the invention can also be applied to situations where it is desired to offset the alignment of the bone fragment to the adjacent bone such as where the object is to create a more prominent chin by cutting the bone of the chin and advancing the bone fragment.
The fixation feature of the invention is likewise independent from the alignment feature. The fixation feature of the device relies on the principle that the device is fixated to the primary bone zone and the fixation feature grips the secondary bone zone by means of spring loaded tab or hook elements engaging the soft areas of the medullary space, irregularities along the cut surface, or a slot cut into the cut surface of the secondary bone zone.
SUMMARY OF THE INVENTION
The invention provides an improved clip, and method of its use, meeting the above need or needs.
As will be seen, the preferred clip is configured to interconnect primary and secondary bone zones having edges spaced apart by a gap, the clip comprising
a) a tab to extend over a surface or surfaces of at least one of said bone zones, above a level defined by the one surface, and
b) a first projection carried by the tab and having a hook to engage a bone zone at its edge, and below a portion of the tab that extends over the projection.
As will be seen, the projection typically extends angularly downwardly from the tab at angle between 50° and 60° from a plane defined by the tab, and terminates at the hook, and the hook has a sharp terminal to enable penetration of bone marrow. The projection has a shank configured to provide enhanced bending resilience in a direction toward the hook. The shank is desirably bowed, and may have two sections, at least one of which is bowed. In this regard, the sections preferably form an S-shaped configuration, as will be seen. The tab may contain a through hole to receive a fastener that fastens to one of the bone zones; and the tab may be elongated to bridge portions of both the primary and secondary bone zones.
It is another object to provide a clip configuration incorporating a second projection carried by the tab and having a hook to engage the primary bone zone at its edge, and below said front level. Further, the two projections may advantageously extend in generally parallel relation, and angularly downwardly from the tab, and terminate at said hooks, whereby bending forces generated by deflection of both projections are utilized to achieve enhanced holding by the two hooks to the same edge of the bone zone. The preferred S-shape of the projection serves to enhance such holding.
Yet another object is to provide a tab retraction notch, or two retraction notches proximate the ends of the projections closest to the tab; and an alignment protrusion may be provided to be integral with the tab and located b
Hohenstein Eric V.
Wellisz Tadeusz Z.
Bioplate, Inc.
Haefliger William W.
Manahan Todd #E.
LandOfFree
Cranial bone flap fixation clip does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cranial bone flap fixation clip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cranial bone flap fixation clip will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3028149