Crane monitoring and data retrieval systems and method

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Construction or agricultural-type vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S685000, C212S276000

Reexamination Certificate

active

06496766

ABSTRACT:

TECHNICAL FIELD
The present invention is generally directed to the detection and retrospective analysis of the critical events associated with non-compliant or dangerous operations carried out by operators of cranes. More particularly, the present invention is directed to a system and method for automatically collecting, processing and storing data representative of crane operating conditions causing such non-compliant or dangerous operations, for later retrieval and analysis.
BACKGROUND ART
Lifting and positioning of heavy objects is one of the basic tasks in construction. A wide variety of types of cranes, derricks and other hoisting equipment, both mobile and permanently installed, are used to carry out specific lifting and positioning operations. In the past, safe crane operations depended on operator training, good maintenance, effective planning, and supervision. Safety is considered to be among the most critical issues involved in the success of any lift operation. However, crane accidents still occur. Such accidents often involve serious personal injury or death and costly destruction of property, as well as costly damage to the crane itself such as crane boom bending and turret drive gear failure.
Studies have shown that crane operators often expose cranes to frequent uncharacteristic loading conditions, such as the dragging of waste buckets and the extrication or extraction of piles, tree stumps and lodged debris. The culpability of crane operators is often attributed to lack of sufficient information regarding crane capacities, poor planning or miscalculations regarding anticipated load conditions, poor decision-making during crane operation, and simply carelessness. Dragging and extrication events constitute overload conditions and can cause several types of failure modes and resulting damage, such as the creation of grooves on sheave pulleys, plastic deformation and even complete failure of the boom, and breakage of gear teeth in the turret drive. Grooving and gear teeth breakage are directly related to hoist cable load vectors with significant components off the normal axis and are induced during the dragging of loads. Boom deformation and failure can result from overloading the boom by exceeding safe loading capacities for the different boom angles and boom extensions specified by capacity charts provided by crane manufacturers. Deformation can also result from the cumulative effect of static and dynamic forces that occur during the abrupt extrication events.
In order to assist the crane operator and secure the crane from damages, overload protection systems based on hydraulic pressure limits are provided as standard in many new cranes. These overload protection systems, however, do not secure the crane against dragging or extrication events. In addition, operators often choose to ignore the warning signals from the protection system and consequently operate cranes at dangerous hydraulic pressure levels.
Presently, no adequate means exist for detecting the occurrence of hazardous dragging and extrication events or for recording such events. Accordingly, a need exists for a crane monitoring system capable of detecting such events, providing an audible warning to the crane operator of detected event, and automatically storing electronic data descriptive of the actual event for later analysis by skilled investigators.
DISCLOSURE OF THE INVENTION
The crane monitoring system and method according the present invention can generally be characterized by a plurality of sensors mounted to a crane which communicate data to an on-board control unit. The control unit is characterized by having “black box” functionality. In general, the control unit processes and stores input data which will indicate either normal or unsafe crane conditions. Unsafe crane conditions are defined as alarm events such as dragging and extrication events. Each stored event has a time and date stamp indicating the time at which the event occurred and the time when the event is cleared. The control unit stores the latest event in a record format until the device memory is filled. The control unit rolls over the data after the memory is filled, erasing the oldest record in order to store the most recent record.
The input data from sensors is digitized and stored continuously. The processing circuitry of the control unit compares the input data to a predetermined set of parameters to detect whether an alarm event has occurred. Upon detection of an alarm condition, a horn output is activated. The control unit then logs data from the sensors into a non-volatile memory, along with the data from a period of time such as ten seconds prior to the alarm. Data is stored continuously until the alarm event clears and then, for a period of time such as thirty seconds, additional data is stored after the conclusion of the alarm event. This results in a discrete event log residing on the non-volatile memory which can subsequently be accessed by authorized personnel for analysis and identification of the crane operator who caused the alarm event. The event log can be downloaded to a PC in comma delimited format so that it can be used by any common spreadsheet program.
According to one embodiment of the present invention, a method is provided for monitoring critical operations of a crane, and for safely and automatically storing records of alarm events arising from such operations the method comprises the following steps. A plurality of input channels are provided, over which crane condition signals can be transferred from sensors mounted to a crane. Each crane condition signal is generated by one of the sensors, and includes a value representative of a specific measurement or condition of the crane during operation thereof. A data set is continuously sampled at a predetermined sampling rate during operation of the crane by communicating with the input channels. Each sampled data set includes the value detected for each crane condition signal at the time of sampling, and also includes time and date information corresponding to the respective time and date of sampling. Given the significant transfer speed of electrical signals and the processing speed of modem digital processing devices, the time of sampling substantially corresponds to the time at which the crane condition occurred.
Each data set sampled is stored into a non-volatile memory device. For each data set sampled, the values of the crane condition signals are compared to a set of predetermined safe operating parameters to determine whether an alarm event has occurred. The alarm event is defined when one or more of the values of the sampled crane condition signals falls outside a corresponding one or more of the safe operating parameters. If an alarm event has occurred, the values of the crane condition signals are compared to the safe operating parameters to determine whether the alarm event has ceased. The cessation of the alarm event is defined when one or more of the values of the sampled crane condition signals falls back inside a corresponding one or more of the safe operating parameters. If an alarm event has occurred, an event log is generated for the alarm event by storing, into a separately addressed location of the non-volatile memory device, all data sets sampled over a period of event history. The period of event history is defined as starting at a predetermined number of seconds prior to the occurrence of the alarm event and ending at a predetermined number of seconds after the cessation of the alarm event.
According to another embodiment of the present invention, the method of crane monitoring includes mounting the plurality of sensors to a crane, and securely mounting a control unit to the crane. Control circuitry is provided within the control unit. The plurality of input channels are provided to establish communication from the sensors to the control circuitry. The control circuitry is programmed to perform the crane monitoring and data storage functions described hereinabove, including sampling the data set, storing the data set into the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Crane monitoring and data retrieval systems and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Crane monitoring and data retrieval systems and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crane monitoring and data retrieval systems and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2966683

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.