Coherent light generators – Particular active media – Semiconductor
Reexamination Certificate
1999-08-31
2002-06-25
Ip, Paul (Department: 2828)
Coherent light generators
Particular active media
Semiconductor
C372S045013, C372S046012, C372S050121, C372S096000, C438S022000, C257S098000
Reexamination Certificate
active
06411638
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to semiconductor lasers, and more particularly, to a laser structure and method for manufacturing a single transverse mode Vertical-Cavity Surface-Emitting Laser (VCSEL).
BACKGROUND OF THE INVENTION
Various schemes for producing semiconductor diode lasers are known in the art. Conventional edge-emitting diode lasers comprise an optical cavity that is parallel to the surface of the wafer from which many laser dice (or chips) are produced from a wafer by sawing or cleaving. Laser radiation is extracted from the side of the die in an edge-emitting laser. Surface-emitting lasers, in contrast, emit radiation perpendicular to the semiconductor substrate plane, from the top or bottom of the die. A Vertical-Cavity Surface-Emitting Laser (VCSEL) is a surface-emitting laser having mirrors disposed parallel to the wafer surfaces that form and enclose an optical cavity between them. Recently there has been an increased interest in VCSELs because of their smaller size, higher performance, and ease of manufacturability when compared to edge-emitting lasers. VCSELs have proven useful for multi-mode operation, in particular, and for use in modern high speed, short wavelength communication systems.
VCSELs usually have a substrate upon which a first mirror stack and second mirror stack is disposed, with a quantum well active region therebetween. Gain per pass is much lower with a VCSEL than an edge-emitting laser, which necessitates better mirror reflectivity. For this reason, the mirror stacks in a VCSEL typically comprise a plurality of Distributed Bragg Reflector (DBR) mirrors, which may have a reflectivity of 99.7% or higher. An electrical contact is positioned on the second mirror stack, and another contact is provided at the opposite end in contact with the substrate. When an electrical current is induced to flow between the two contacts, lasing is induced from the active region and emits through either the top or bottom surface of the VCSEL.
VCSELs may be broadly categorized into multi-transverse mode and single transverse mode, each category being advantageous in different circumstances. A goal in manufacturing single-mode VCSELs is to assume single-mode behavior over all operating conditions, without compromising other performance characteristics. Generally, the active regions of single transverse mode VCSELs require small lateral dimensions, which tend to increase the series resistance and beam divergence angle. Furthermore, a device that is single-mode at one operating condition can become multi-mode at another operating condition, an effect that dramatically increases the spectral width and the beam divergence of the emitted radiation of the VCSEL.
Manufacturing a VCSEL with good mode control and high performance characteristics poses a challenge. It is difficult to manufacture VCSELs that efficiently operate in the lowest order mode (single mode). Most prior art VCSELs tend to lase in higher-order transverse modes, whereas single transverse mode lasing is preferred for some applications, such as sensors.
In the June 1991 issue of IEEE Journal of Quantum Electronics, Vol. 27, No. 6, in an article entitled, “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, Characterization,” Jewell et al. discuss design issues, molecular beam epitaxial (MBE) growth, fabrication and lasing characteristics of VCSELs in general.
In the August, 1998 publication of IEEE Photonics Technology Letters, Vol. 10, No. 8, in article entitled “Single-Mode Operation in an Antiguided Vertical-Cavity Surface Emitting Laser Using a Low-temperature Grown AlGaAs Dielectric Aperture,” Oh et al. discuss using a low-temperature growth of a highly resistive AlGaAs dielectric aperture. A reduced regrowth temperature is required to obtain smooth boundaries over the aperture perimeter.
U.S. Pat. No. 5,903,588, “Laser with a Selectively Changed Current Confining Layer,” which issued to Guenter et al. on May 11, 1999, discloses a laser structure with two current confirming layers of a material that is subject to oxidation in the presence of an oxidizing agent. Unoxidized layer portions are surrounded by oxidized and electrically resistive ports in order to direct current from one electrical contact pad by passing through a pre-selected portion of an active region of the laser.
In the June 1995 issue of the IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No. 2, in an article entitled “Single-Mode, Passive Antiguide Vertical Cavity Surface Emitting Laser,” We et al. discuss using a passive antiguide region surrounding the active region to achieve a single stable mode at high currents. This design is disadvantageous because a mesa structure is formed, and then material must be regrown around the side, while maintaining single crystal characteristics.
In the October 1997 issue of the IEEE Photonics Technology Letters, Vol. 9, No. 10, in an article entitled “Efficient Single-Mode Oxide-Confined GaAs VCSELs Emitting in the 850-nm Wavelength Regime”, Grabherr et al. disclose a single mode oxide-confined VCSEL. An oxidized current aperture is placed adjacent the active region of the VCSEL.
In the Apr. 1, 1998 publication of the Journal of Applied Physics, Vol. 83, No. 7, in an article entitled “Effect of Reflectivity at the Interface of Oxide Layer on Transverse Mode Control in Oxide Confined Vertical-Cavity Surface-Emitting Lasers,” Huang demonstrates transverse mode control by modeling the dielectric aperture as a uniform waveguide and an extra reflectivity at the oxide layer. Huang shows that replacing the first layer of the DBR with a ¾ wavelength layer immediately adjacent the optical cavity, and inserting an oxide layer inside the ¾ wave layer, results in a low refractive index step and lower threshold current.
Usually, to manufacture a VCSEL, a relatively large current aperture size is required to achieve a low series resistance and high power output. A problem with a large current aperture is that higher order lasing modes are introduced so that single mode lasing only occurs just above threshold, if at all. Manufacturing a VCSEL with a smaller current aperture to more reliably obtain single mode behavior causes multiple problems: the series resistance and beam divergence angle become large, and the attainable power becomes small. Anti-guide structures of the prior art prevent some of these disadvantages, but suffer from manufacturing difficulties, particularly in requiring an interruption in epitaxial growth, a patterning step, and subsequent additional epitaxy. Other large single mode VCSELs require multi-step MBE or MBE/MOCVD combinations to manufacture, creating alignment and yield problems.
What is needed in the art is a VCSEL with improved mode control and ease of manufacturing, with as large as possible an aperture, to minimize the series resistance and beam divergence.
SUMMARY OF THE INVENTION
The present invention achieves technical advantages as a VCSEL designed for single mode operation whereby a phase shifting region, which creates a coupled cavity, is disposed within one mirror stack. The coupled cavity decreases reflectance as seen from the active region. This phase shifting region is disposed nominally outside the optical aperture. The resultant reflectance increases losses for higher order modes relative to the fundamental mode because higher order modes have a larger spatial extent. Centering the phase shifting region at a node of the optical electric field of the VCSEL maximizes the losses for higher order modes relative to the fundamental mode. In addition to the enhanced losses the present invention also creates an antiguide.
According to a first embodiment, disclosed is a laser structure adapted to lase at a wavelength lambda. The laser structure includes a first mirror stack, an active region disposed on the first mirror stack, and a second mirror stack disposed on the active region. The second mirror stack includes a plurality of mirror layer pairs with a resonant layer having a phase shiftin
Clark Andrew
Gunter James
Johnson Ralph Herbert
Abeyta Andrew A.
Flores Ruiz Delma R.
Fredrick Kris T.
Honeywell Inc.
Ip Paul
LandOfFree
Coupled cavity anti-guided vertical-cavity surface-emitting... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coupled cavity anti-guided vertical-cavity surface-emitting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coupled cavity anti-guided vertical-cavity surface-emitting... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2910653