Cost propagation switch protocols

Multiplex communications – Data flow congestion prevention or control – Flow control of data transmission through a network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S401000

Reexamination Certificate

active

06493318

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to communication networks and more specifically to network switches and associated switch to switch protocols which provide improved bandwidth utilization and load balancing in data processing communication networks having redundant paths between network devices.
2. Related Patents
This patent is related to the following commonly owned patents: U.S. patent Ser. No. 09/228,110 entitled Load Balancing Switch Protocols, U.S. patent Ser. No. 09/228,159 entitled Identity Negotiation Switch Protocols, U.S. patent Ser. No. 09/228,913 entitled Cost Calculation in Load Balancing Switch Protocols, U.S. patent Ser. No. 09/228,087 entitled Broadcast Tree Determination in Load Balancing Switch Protocols, U.S. patent Ser. No. 09/228,918 entitled MAC Address Learning and Propagation in Load Balancing Switch Protocols, U.S. patent Ser. No. 09/228,992 entitled Path Recovery on Failure in Load Balancing Switch Protocols, and U.S. patent Ser. No. 09/228,169 entitled Discovery of Unknown MAC Addresses Using Load Balancing Switch Protocols, all of which are hereby incorporated by reference.
3. Discussion of Related Art
It is common in present computing environments to connect a plurality of computing systems and devices through a communication medium often referred to as a network. Such networks among communicating devices permit devices (or users of devices) to easily exchange and share information among the various devices. The Internet is a presently popular example of such networking on a global scale. Individual users attach their computers to the Internet, thereby enabling sharing of vast quantities of data on other computers geographically dispersed throughout the world.
Networked computing systems may be configured and graphically depicted in a wide variety of common topologies. In other words, the particular configurations of network communication links (also referred to as paths) and devices between a particular pair of devices wishing to exchange information may be widely varied. Any particular connection between two computers attached to a network may be direct or may pass through a large number of intermediate devices in the network. In addition, there may be a plurality of alternative paths through the network connecting any two network devices. Present day computing networks are therefore complex and vary in their configurations and topologies.
Most present network communication media and protocols are referred to as packet oriented. A protocol or communication medium may be said to be packet oriented in that information to be exchanged over the network is broken into discrete sized packets of information. A block of information to be transferred over the network is decomposed into one or more packets for purposes of transmission over the network. At the receiving end of the network transmission, the packets are re-assembled into the original block of data.
In general, each packet includes embedded control and addressing information that identifies the source device which originated the transmission of the packet and which identifies the destination device to which the packet is transmitted. Identification of source and destination devices is by means of an address associated with each device. An address is an identifier which is unique within the particular computing network to identify each device associated with the network. Such addresses may be unique to only a particular network environment (i.e., a network used to interconnect a single, self-contained computing environment) or may be generated and assigned to devices so as to be globally unique in co-operation with networking standards organizations.
At the lowest level of network communication, such addresses are often referred to as MAC address (Media ACcess address). Network protocols operable above this lowest level of communication may use other addresses for other purposes in the higher level communication techniques. But in most network low level communication levels, operable on the physical link medium, an address is referred to as a MAC address.
In many present commercially available network environments, the network communication medium is in essence a bus commonly attached to a plurality of devices over which the devices exchange. In a simple networking topology, all devices may be attached to a such a bus structured common network medium. Any particular single network medium has a maximum data exchange bandwidth associated therewith. The maximum data exchange bandwidth of a medium is determined by a number of electrical and physical properties of the medium and protocols used to communicate over that medium. For example, a popular family of related network media and protocols are collectively referred to as Ethernet. Ethernet defines a standard protocol for the exchange of messages over the communication medium. A variety of communication media are also defined as part of the Ethernet family. The communication bandwidth of the Ethernet family of standards range from approximately 10 Mbit (million bits of information) per second to 1 Gbit per second. Therefore, a single (slow) Ethernet connection, for example, has a maximum data exchange bandwidth of approximately 10 Mbit per second.
In present network computing environments, a number of devices are used in addition to interconnected computing systems to efficiently transfer data over the network. Routers and switches are in general network devices which segregate information flows over various segments of a computer network. A segment, as used herein, is any subset of the network computing environment including devices and their respective interconnecting communication links. As noted above, a single computer network communication link has a maximum data transfer bandwidth parameter defining the maximum rate of information exchange over that network. Where all devices on a computer network share a common network medium, the maximum bandwidth of the computer network may be rapidly reached. The overall performance of the networked computing environment may be thereby reduced because information exchange requests may have to await completion of earlier information exchange requests presently utilizing the communication link.
It is often the case, however, that particular subsets of devices attached to the network have requirements for voluminous communication among members of the same subset but less of a requirement for information exchange with other devices outside their own subset. Though standard switch features generally do not include identifying such logical groupings of devices, some enhanced switching features do permit such logic to be performed within a switch device. For example, some enhanced switch features include the concept of defining and routing information based on virtual LAN (VLAN) definitions. In a VLAN, a group of devices may be defined as logically being isolated on a separate network although physically they are connected to a larger network of devices. VLAN features of enhanced switches are capable of recognizing such VLAN information and can route information appropriately so that devices in a particular VLAN are logically segregated from devices outside the VLAN.
For example, the financial department of a large corporation may have significant information exchange requirements within the financial department but comparatively insignificant needs for data exchange with other departments. Likewise, an engineering group may have significant needs for data exchange within members (computing systems and devices) of the same engineering group but not outside the engineering group. There may in fact be multiple of such subsets of devices in a typical computing network. It is therefore desirable to segregate such subsets of devices from one another so as to reduce the volume of information exchange applied to the various segments of the computer network.
In particular, a switch device is a device that filters out packets on the network destined for devices outs

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cost propagation switch protocols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cost propagation switch protocols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cost propagation switch protocols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2986074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.