Cosmetic deodorant products containing encapsulated...

Drug – bio-affecting and body treating compositions – Anti-perspirants or perspiration deodorants

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S493000, C424S497000, C424S722000, C424S717000, C428S402240

Reexamination Certificate

active

06555098

ABSTRACT:

BACKGROUND OF THE INVENTION
Alkali metal bicarbonate is a commodity reagent which has found application in a broad variety of products such as laundry detergents, deodorizers, creams and lotions, dentifrices, antacids, buffers, fungicides, and the like.
The inclusion of particulate alkali metal bicarbonate in a cosmetic deodorant stick or roll-on formulation provides a product with improved deodorant properties. Dimensional instability of a cosmetic stick or roll-on product containing bicarbonate ingredient, and the esthetic appearance and the “feel” on the skin, are among the difficulties encountered in the preparation of a low residue cosmetic antiperspirant-deodorant product. The high density of a suspended particle-phase of bicarbonate ingredient relative to the low density of an organic matrix phase contributes to the instability and settling of the bicarbonate particle phase in a cosmetic stick or roll-on personal care product.
In addition, a bicarbonate ingredient often is incompatible with the active astringent salts and with other ingredients of conventional cosmetic stick products. A bicarbonate ingredient in direct contact with acidic ingredients is susceptible to decomposition into carbon dioxide and water.
An additional factor is the risk of a fragrance ingredient incompatibility with bicarbonate and astringent ingredients.
There is continuing interest in the development of reagents such as alkali metal bicarbonate and ammonium bicarbonate which have a uniform fine grain particle size, and exhibit a novel combination of properties when utilized as an ingredient in personal care, biologically active, household, and specialty type products. There is also interest in the development of a bicarbonate powder which is in a form that is stable when blended with an acidic ingredient in a formulation.
Accordingly, it is an object of this invention to provide an alkali metal bicarbonate or ammonium bicarbonate powder which has a fine grain particle size, and which is free-flowing and essentially free of agglomerated solids.
It is another object of this invention to provide an encapsulated powder composition that is a blend of particles which are composed of polymer-coated crystallites of bicarbonate salt and fragrance compounds, and which have a lower density than the inner core bicarbonate crystallites of the encapsulated particles.
It is a further object of this invention to provide a cosmetic deodorant product which, when applied to underarm surfaces, signals deodorizing activity by the release of a fragrance aroma.
Other objects and advantages of the present invention shall become apparent from the accompanying description and examples.
DESCRIPTION OF THE INVENTION
One or more objects of the present invention are accomplished by the provision of an encapsulated bicarbonate salt powder composition comprising (1) discrete crystallites of at least one ingredient selected from alkali metal and ammonium bicarbonates, and (2) between about 0.1-20 weight percent of discrete crystallites of a fragrance ingredient; wherein the crystallites are in the form of surface-coated particles.
The bicarbonate salt crystallites can have an average particle size between about 5-150 microns. The fragrance crystallites can have an average particle size between about 5-300 microns. A preferred range for both bicarbonate and fragrance crystallites is an average particle size between about 5-80 microns. A present invention encapsulated powder composition typically is free-flowing and essentially free of agglomerated solids.
The term “discrete” as employed herein refers to crystallites which are individually distinct solids.
The term “average particle size” as employed herein refers to the average of the largest dimension of particles.
The particulate bicarbonate salt starting material of an invention encapsulated powder composition is selected from alkali metal and ammonium bicarbonates, such as sodium bicarbonate, potassium bicarbonate and ammonium bicarbonate, and mixtures thereof.
The particulate fragrance starting material preferably is selected from crystalline organic compounds which include vanillin, ethyl vanillin, coumarin, tonalid, calone, heliotropene, musk xylol, cedrol, musk ketone, benzophenone, raspberry ketone, methyl naphthyl ketone beta, phenyl ethyl salicylate, veltol, maltol, maple lactone, proeugenol acetate, evernyl, and the like.
Other suitable fragrances such as menthol and camphor exhibit kinesthetic properties, and are utilized in personal products to provide a “cod feel” on skin surfaces.
The polymer coating on the ingredient crystallites can be applied to the bicarbonate powder and fragrance powder starting materials in separate procedures, and the two encapsulated powders then can be blended in a selected proportion of ingredients.
In an alternative procedure, the bicarbonate and fragrance powders are pre-blended, and the polymer coating is applied to the powder blend. Depending on the type of polymer and the coating conditions, and the particle size of the bicarbonate and fragrance crystallites, the final encapsulated powder composition can have a content of 10 weight percent or higher of encapsulated particles having a core content of both bicarbonate and fragrance crystallites. During the polymer coating procedure, crystallites with a liquid surface coating can make contact and coalesce into larger encapsulated particles with a content of multiple crystallites.
The application of the polymer coating to the ingredient crystallite surfaces is accomplished by conventional means such as pan coating, fluidized coating, centrifugal fluidized coating, and the like. The coating polymer usually is dissolved in a suitable solvent such as water, methanol, ethanol, acetone, tetrahydrofuran, ethyl acetate, dimethylformamide, and the like, as appropriate for a selected polymer species. A coating polymer also can be applied in the form of an emulsion or suspension. After the coating medium is applied to the crystallites, the solvent medium is removed by evaporation, thereby forming a continuous film coating which encapsulates the discrete fine grain crystallites.
In a preferred coating procedure, bicarbonate powder is dispersed in an aqueous medium which contains a coating polymer ingredient. The aqueous dispersion is atomized and sprayed into heated air to remove the aqueous phase, and to provide a free-flowing polymer-encapsulated bicarbonate powder product.
The coating thickness on the crystallite surfaces typically will vary in the range between about 0.1-20 microns. The coating can consist of a single layer or multiple layers. The polymeric coating can constitute between about 5-70 weight percent of the total dry weight of the coated crystallites.
A polymer employed for coating the bicarbonate and fragrance crystallites is selected from hydrophilic organic polymers and hydrophobic (water-insoluble) organic polymers and mixtures thereof.
A hydrophilic polymer employed for coating the ingredient crystallites is selected from water-soluble and water-dispersible organic polymers. A mixture of polymers can be employed, and a content of between about 0.5-40 weight percent of a water-insoluble polymer, based on the coating weight, can be included with a hydrophilic polymer.
The term “hydrophilic” as employed herein refers to an organic polymer which has a water-solubility of at least about one gram per 100 grams of water at 25° C. The term “hydrophobic” or “water-insoluble” as employed herein refers to an organic polymer which has a water solubility of less than about one gram per 100 grams of water at 25° C.
Suitable hydrophilic polymers for coating ingredient crystallites include gum arabic, gum karaya, gum tragacanth, guar gum, locust bean gum, xanthan gum, carrageenan, alginate salt, casein, dextran, pectin, agar, sorbitol, 2-hyroxyethyl starch, 2-aminoethyl starch, maltodextrin, amylodextrin, 2-hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose salt, cellulose sulfate salt, polyvinylpyrrolidone, polyethylene glycol, polypropylene glycol, polyethylene oxide, po

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cosmetic deodorant products containing encapsulated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cosmetic deodorant products containing encapsulated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cosmetic deodorant products containing encapsulated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052573

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.