Corrosion resistant, high strength alloy and a method for...

Metal treatment – Stock – Ferrous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S327000, C419S050000, C419S043000, C075S239000, C075S240000, C075S242000

Reexamination Certificate

active

06767416

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an advanced austenitic stainless steel, more particularly to a structural austenitic stainless steel suited for use in a corrosive environment or a high stress loaded environment, and a method for manufacturing the same.
Among the industrial steel materials, austenitic stainless steel has widely been used as a structural material because of its excellent corrosion resistance and workability. This steel, however, is low in strength in comparison with other types of structural steel. Also, although the austenitic stainless steel has high corrosion resistance, it is rather inferior to other types of steel in use in a specific corrosive environment where pitting or stress corrosion cracking is likely to occur.
With the progress of working efficiency and weight reduction of the products in recent years, request has been rising in the industries for high strength structural materials. In order to comply with such request, attempts have been made to achieve higher strength of structural materials by use of additional alloy elements such as rare metals, but use of such elements is not preferable in view of recycling of the materials. One method for improving strength and corrosion resistance of an alloy without changing the alloy composition is to utilize finer crystal grains.
The primary cause of deformation of metal material is slip deformation caused by the so-called dislocation, which is the transfer of lattice defect existing in the crystal. A high resistance is produced due to the interaction between the grain boundaries and dislocation when dislocation passes across the crystal grain boundaries.
To decrease grain size is to raise the density of the crystal grain boundaries, and the phenomenon of deformation resistance increased by decreasing grain size is well known as the Hall-Petch relationship, i.e., yield stress increases in proportion to the −½ power of the crystal grain size.
For the alloys containing an element capable of forming a protective film, such as Cr, the finer the crystal grains are, the more promoted is the diffusion of the grain boundaries, whereby formation of the protective film is made easier. The impurity element segregated at the grain boundaries is considered as one of the causes of intergranular corrosion, but introduction of the grain boundaries into bulk as a result of grain refinement may dilute the concentration of the impurity element down to improve corrosion resistance. Conventional means for fining the crystal grains of steel materials include thermomechanical treatment comprising combination of such operation as rolling or upsetting with ensuing heat treatment.
Researchers are pursuing studies for comminuting the crystal grains of austenitic stainless steel to the submicron size by thermomechanical treatment making use of deformation-induced martensite transformation and inverse transformation caused at a high temperature. Such studies are reported in, for instance, Tetsu-to-Hagane, The Iron and Steel Institute of Japan, Vol. 80, pp. N529-N535, 1994; and Bulletin of Japan Institute of Metals, Vol. 27, No. 5, pp. 400-402, 1988.
However, as is generally conceived, in a process where a solid soluted material is rolled at a high draft, the crystal grain size is strongly affected by workability, namely by the degree of working in the direction of rolling and in the thickness direction, and tends to have a non-uniform distribution, so that this method is unsuited for obtaining thick-walled components. Further, it is not easy to obtain a high degree of working by cold rolling while avoiding the formation of cracks.
Mechanical milling (mechanical alloying or mechanical grinding), which performs forced working of metal powder by a ball mill or such, is capable of forming powder having a crystal structure of nanometer grain size, since the strain energy accumulated by working is much larger than the conventional methods such as rolling. For consolidating the powder which has undergone mechanical milling (hereinafter referred to as mechanically milled powder), the powder needs to be sintered at a high temperature under a high pressure. Usually, strain energy is released in the course of high-temperature heating to cause coarsening of the crystal grains, so that it is difficult to carry out the consolidation process of the powder while maintaining the nano-scale crystalline state.
Studies are underway for obtaining a bulk material of austenite stainless steel by consolidating its mechanically milled powder and grinding the crystal grains to the submicron size. They are reported, for instance, in (1) JP-A-8-337853, (2) JP-A-10-195502, and (3) Tetsu-to-Hagane, The Iron and Steel Institute of Japan, Vol. 84, pp. 357-362, 1998.
In the materials disclosed in (2) and (3) above, the sigma phase is dispersed to control the growth of austenite crystal grains. However, the M
23
C
6
type carbide or sigma phase, which emerges principally in austenitic stainless steel, is mainly composed of Cr, so that it acts to lower Cr concentration in the surrounding and to encourage corrosion. It is possible to reduce the influence of such carbide or sigma phase by reducing the grain size, but such material can not be deemed suited as dispersed grains to be reduced in size.
The material described in the above literature (1) suggests that precipitation of a carbide or oxide mainly composed of Ti, Zr or Nb is likely to take place, but this literature fails to mention the optimal composition or process conditions for controlling the grain growth.
In the Abstract of the Proceedings of 1998 General Meeting of The Iron and Steel Institute of Japan, Vol. 11, page 563, it is reported that the fine crystal structure of ferrite steel with a nanometer grain size can be stabilized over a high temperature level of 1,000° C. or higher by adding and dispersing finely divided Y
2
O
3
with a grain size of several tens nanometers in the ferrite steel. However, when recycling of the material is considered, addition of a specific alloy element such as yttrium in the steel material is undesirable as it may complex the refining process, leading to a rise of production cost.
As viewed above, with the techniques disclosed hitherto, the manufacture of bulk material having a nona-scale ultra-fine crystal structure is possible only under the conditions in which the dimensions and shape of the product are restricted. Also, no disclosure has been made on the optimal compositions or process conditions for achieving high strength and high corrosion resistance.
Accordingly, an object of the present invention is to provide austenitic stainless steel of ultra-fine crystal structure having high strength and high corrosion resistance in comparison with the conventional steel materials, and a method for manufacturing such austenitic stainless steel.
SUMMARY OF THE INVENTION
The aspects of the present invention for attaining the above object are as follows.
[1] A corrosion resistant, high strength austenitic stainless steel consisting of 1.0% or less of Si, 2.0% or less of Mn, 0.5% or less of O, 7 to 30% of Ni, 14 to 26% of Cr, 0.3% or less of combination of C and N, at least one element selected from the group consisting of 1.0% or less of Ti, 2.0% or less of Zr and 2.0% or less of Nb, and the balance consisting of Fe and unavoidable impurities, the percentage being given in weight basis; said steel containing carbonitride with a grain size of several to 100 nm dispersed therein;
said steel having an average crystal grain size of 1 &mgr;m or less; and
said steel containing 90% by volume or more of austenite phase.
[2] A corrosion resistant, high strength austenitic stainless steel consisting of 1.0% or less of Si, 2.0% or less of Mn, 0.5% or less of O, 7 to 30% of Ni, 14 to 26% of Cr, 3% or less of Mo, 0.3% or less of combination of C and N, at least one element selected from the group consisting of 1.0% or less of Ti, 2.0% or less of Zr and 2.0% or less of Nb, and the balance consisting of Fe and unavoidable impurities,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Corrosion resistant, high strength alloy and a method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Corrosion resistant, high strength alloy and a method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Corrosion resistant, high strength alloy and a method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3191990

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.