Corrosion-resistant coated metal and method for making the same

Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S647000, C428S648000, C428S939000, C220S562000, C220S567200, C206S524300

Reexamination Certificate

active

06794060

ABSTRACT:

The present invention relates to the art of a corrosion-resistant metal material and more particularly to a corrosion resistant alloy or coated base metal which is coated with a corrosion resistant alloy, which alloy is environmentally friendly, and has a long life.
INCORPORATION BY REFERENCE
As background material so that the specification need not specify in detail what is known in the art, U.S. Pat. Nos. 4,934,120; 4,982,543; 4,987,716; 4,934,120; 5,001,881; 5,022,203; 5,259,166; and 5,301,474 are incorporated hereinby reference to illustrate metal roofing systems of the type to which this invention can be used. U.S. Pat. No. 5,455,122 is incorporated herein by reference to illustrate petroleum receptacles of the type to which this invention can be used. U.S. Pat. No. 5,203,985 is incorporated herein by reference to illustrate a prior art electroplating process which can be used to coat the coated base metal. U.S. Pat. Nos. 5,296,300; 5,314,758; 5,354,624; 5,395,702; 5,395,703; 5,397,652; 5,401,586; 5,429,882; 5,455,122; 5,470,667; 5,480,731; 5,489,490; 5,491,035; 5,491,036; 5,492,772; 5,520,964; 5,597,656; 5,616,424; 5,667,849, 5,695,822; and 6,080,497 and U.S. patent application Ser. No. 07/913,209, filed Jul. 15, 1992; Ser. No. 08/042,649, filed Apr. 5, 1993; Ser. No. 08/929,623, filed Sep. 15, 1997; Ser. No. 08/980,985, filed Oct. 20, 1997; Ser. No. 09/100,578, filed Jun. 19, 1998; Ser. No. 09/131,219, filed Aug. 7, 1998; Ser. No. 09/161,573, filed Sep. 28, 1998; Ser. No. 09/161,580, filed Sep. 28, 1998; and Ser. No. 09/420,165, filed Oct. 18, 1999 are incorporated herein by reference to illustrate various processes that can be used to coat, treat and use the coated base metal.
BACKGROUND OF THE INVENTION
The present invention relates to the art of corrosion-resistant metal materials such as a corrosion-resistant metal made of a corrosion-resistant metal alloy or a base metal which is coated with a corrosion resistant metal alloy, which corrosion-resistant metal materials can be used in a wide variety of applications such as, but not limited to, architectural or building materials such as roofing materials, siding materials, window frames, sheet metal, metal plates and the like; truck and automotive products such as, but not limited to, gasoline tanks, filter casings, body molding, body parts and the like; household products such as, but not limited to, appliance housings, electrical housings, light fixtures and the like; marine products such as, but not limited to, boat hulls, boat masts, dock system components; and/or other types of metal materials such as, but not limited to, tools, machinery, wires, cables, electrodes, solder and the like. The invention also relates to various metal alloy compositions or metal coating alloy compositions based upon metal alloys of tin and metal alloys of tin and zinc, and several novel methods and processes used therein for forming the metal alloy materials or base metals coated with the metal alloy composition, such as, but not limited to, wire or solder forming, metal strip forming, and coated metal forming by a plating process and/or a hot-dip process (i.e plating of metal alloy and subsequent flow heating, immersion in molten metal alloy, metal spraying of metal alloy, and/or roller coating of metal alloy), pretreatment of the base metal prior to metal alloy coating, applying an intermediate barrier metal layer prior to metal alloy coating, post-treating the metal alloy or coated base metal, and/or forming the metal alloy or coated base metal into a variety of different articles.
Over the last several years, there has been a trend in the industry to produce products which are higher in quality, are environmentally friendly, and are safe for use by humans, animals, and/or plants. This push for quality, safety and environmental friendliness is very apparent in the automotive industry wherein both consumer groups and environmental organizations are constantly lobbying for safer, higher-quality vehicles that are more fuel efficient and less detrimental to the environment. Recycling old vehicles has been one answer to resolving the environmental issues associated with vehicles which have run out their useful life. Automotive salvage markets have developed for these vehicles. The vehicles are partially dismantled and sold as scrap metal wherein the metal is melted down and reformed into various parts. Because of the environmentally-un-friendly nature of lead, the gasoline tanks of vehicles must be removed prior to the recycling of the vehicle. Gasoline tanks are commonly made of carbon or stainless steel that are coated with a terne alloy.
Terne or terne alloy is a term commonly used to describe a metal alloy containing about 80% lead and the balance tin. The terne alloy is conventionally applied to a base metal by immersing the base metal into a molten bath of terne metal by a continuous or batch process.
Although terne coated metals have excellent corrosion-resistant properties and have been used in various applications, terne coated materials have been questioned due to environmental concerns based on the high lead content of the alloy. Environmental and public safety laws have been proposed and/or passed prohibiting or penalizing the user of materials containing a significant portion of lead. As a result, these terne coated gas tanks must be disposed of in dumping yards or landfills. Not only does the terne coated gasoline tank take up space in the landfills, but there is a concern with the lead leaching from the terne coating into the landfill site and potentially contaminating the surrounding area and underground water reservoirs. Plastic gasoline tanks have been used as an alternative to terne coated materials, but with limited success. Although the use of plastic tanks eliminates the environmental concerns associated with lead, the plastic in-of-itself is a non-environmentally-friendly compound which does not readily degrade and therefore must be disposed of in a landfill. The plastic used to make the gasoline tanks is usually not the type that can be recycled. Plastics have also been found to be less reliable than metal gasoline tanks with respect to durability and safety. Plastic gasoline tanks have a tendency to rupture upon impact, such as from a car accident, whereas a metal gasoline tank tends to absorb much of the shock on impact by bending and slightly deforming. Furthermore, the plastic gasoline tanks are more susceptible to being punctured from roadside debris since the plastic skin is not as strong or malleable as the skin of a metal gasoline tank. Plastic gasoline tanks also require new materials, special tools and new assembly methods to fix and install the gasoline tanks due to the nature of plastic and its physical properties. These additional costs and shortcomings of plastic tanks have resulted in very little adoption of plastic gasoline tanks in present day motor vehicles.
The lead content in metal materials is also of some concern for building materials. This is especially a concern when the metal materials are in contact with drinking water. In many countries, lead pipe has been outlawed to reduce the amount of lead in the water. In many remote locations throughout the world, piped water or well water is not readily available. As a result, structures, such as portable roof systems, are built to capture rain and to store the rain water for later use. These potable roof systems supply an important water source for inhabitants utilizing such structures. Roof systems that are designed to collect rain water are typically made of metal to increase the longevity of the roofing system. Typically, the roof systems are made of carbon steel since such metal is the least expensive. The carbon steel is commonly coated with a terne alloy to extend the life of the roof system. Terne alloy is commonly used due to its relatively low cost, ease of application, excellent corrosion-resistant properties and desirable colorization during weathering. Roof systems have been made of other metals such as, but not limited to, stainle

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Corrosion-resistant coated metal and method for making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Corrosion-resistant coated metal and method for making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Corrosion-resistant coated metal and method for making the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.