Heat exchange – With coated – roughened or polished surface
Reexamination Certificate
2001-09-28
2004-04-27
McKinnon, Terrell L (Department: 3743)
Heat exchange
With coated, roughened or polished surface
C165S905000, C165S134100
Reexamination Certificate
active
06725911
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to corrosion resistance treatment of steels and, more particularly, to the corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment.
Heat exchangers are a key element in many gas furnace applications. Modem high-efficiency gas furnaces typically include a primary heat exchanger and a secondary heat exchanger mounted, in tandem. In the primary heat exchanger, hot combustion products are cooled by extracting heat at a high temperature. The resulting, partially cooled combustion products are then conveyed to the secondary heat exchanger. Typically, such secondary heat exchangers are in the form of a condensing heat exchanger and are used to effect further heat extraction and cooling. In practice, such further heat extraction and cooling commonly results in the condensation of water vapor from the products of combustion and a release of about 10 to 20 percent of the heat otherwise unavailable in the products of combustion. Consequently, furnaces equipped with such condensing heat exchangers can desirably operate at efficiencies in excess of about 88 percent. In fact, typical modem condensing furnaces can achieve AFUE (annual fuel utilization efficiency) ratings of in excess of about 96 percent.
In an effort to enhance the transfer of heat to the circulating air, most condensing heat exchangers employ a fin and tube configuration. Unfortunately, corrosion is a major problem associated with the use of condensing heat exchangers in such gas furnace applications. In particular and as will be appreciated by those skilled in the art, water condensation and evaporation cycles as are typically realized in such applications can lead to undesirable accumulations of salts and low pH conditions within such condensing heat exchangers and thus create or result in a highly aggressive and corrosive conditions within the furnace and, in particular, within or in contact with the condensing heat exchanger. Further, such corrosive conditions are typically further accentuated by the elevated temperatures associated with such combustion environment applications. In practice, such combustion environment temperatures are generally at least about 10-20° C. above ambient, with such temperatures generally falling in the range or about 50° C. to about 150° C.
As will be appreciated, such corrosive conditions and elevated temperatures can undesirably promote corrosion of low cost metal alloy materials that otherwise might find use in such applications. In particular, the presence of nitric and sulfuric oxides can result in the formation of their corresponding acids which can solubilize the otherwise protective surface oxides thus creating a very corrosive environment. Furthermore, condensation-evaporation cycles can lead to an undesirable accumulation of salts on or in the heat transfer tubes of the exchanger such as to result in a breakdown of the protective passivation oxide layer such as may be present on such metal tube surface. In particular, such metal tubes may undergo heavy localized corrosion such as to ultimately lead to “through-wall” penetration. As will be appreciated, such through-wall penetrations can pose various risks and complications dependent on the particular application. For example, such a through-wall penetration can pose a serious health hazard in residential applications wherein flue gases can mix with hot circulating air.
In view of such risks and complications, various efforts have been made to reduce or minimize the risks associated with or resulting from exposure of heat exchanger metal surfaces to such otherwise corrosive conditions. For example, condensing heat exchangers are commonly manufactured using expensive stainless steels to resist corrosion and provide desirably long life. In addition, various exotic or otherwise relatively expensive metal alloy materials, such as AL-6XN® and AL 29-4C, each available from Allegheny Ludlum Corporation, Pittsburgh, Pa., have found application in the manufacture or construction of various heat exchanger surfaces, such as heat exchanger tubing, for example, such as occur or may be included in such condensing heat exchangers. Unfortunately, such alloy materials are costly and consequently the manufacturing or production costs of such condensing heat exchangers can be greater than might be desired.
A low cost alternative to exotic and expensive alloys is to use inexpensive alloys, such as 409 SS for example, to which substrate material a corrosion resistant metallic coating has been applied. Various techniques for obtaining a corrosion resistant metallic coating on a substrate have previously been proposed. In general, however, particular coating techniques or methods, precursors, experimental conditions, and apparatus must be carefully chosen depending on the particular desired end product and the expected or anticipated exposure environments or conditions, as well as process, manufacture and production economics.
Identified below are certain such previously disclosed coating techniques. It is critically important to note that, though these previously disclosed coating techniques seek to improve the corrosion resistant of particular substrate materials, they fail to show or suggest the protective coating application onto a substrate metal, such as of ferrous metal, to provide or result in corrosion protection properties to structures formed of such a substrate metal for extended periods of time such as when used in a condensing heat exchanger structure and when disposed in extremely aggressive environments such as a combustion environment involving exposure to combustion products at significantly elevated temperatures.
The diffusion coating of a metal by the simultaneous deposition of Cr and Si onto the metal is taught by U.S. Pat. No. 5,492,727 and related U.S. Pat. No. 5,589,220. The method utilizes a halide-activated cementation pack with a dual halide activator. These patents specifically disclose the codeposition of chromium and silicon and a minor cerium or vanadium content for the coating of a workpiece. These patents further identify and describe resulting workpiece corrosion protection in a chloride and sulfate-containing environment at ambient temperature.
A chemical vapor deposition (CVD) method for case hardening a ferrous metal interior tubular surface by exposure to diffusible boron with or without other diffusible elements such as silicon to enhance the wear, abrasion and corrosion resistance of the tubular surface is taught by U.S. Pat. No. 5,455,068. The use of chemical vapor deposition for deposit of aluminum and a metal oxide on substrates for improved corrosion, oxidation, and erosion protection is taught by U.S. Pat. No. 5,503,874.
A method for producing materials in the form of coatings or powders using a halogen-containing reactant which reacts with a second reactant to form one or more reactive intermediates from which the powder or coating may be formed by disproportionation, decomposition, or reaction is taught by U.S. Pat. No. 5,149,514.
U.S. Pat. No. 4,822,642 teaches a silicon diffusion coating formed in the surface of a metal article by exposing the metal article to a reducing atmosphere followed by treatment in an atmosphere of 1 ppm to 100% by volume silane, with the balance being hydrogen or hydrogen plus inert gas.
A method for depositing a hard metal alloy in which a volatile halide of titanium is reduced off the surface of a substrate and then reacted with a volatile halide of boron, carbon or silicon to effect the deposition on a substrate of an intermediate compound of titanium in a liquid phase is taught by U.S. Pat. No. 4,040,870.
While the methods and resulting coatings disclosed in these patents may improve the corrosion resistance properties of a substrate material coated therewith, even if only for a very short period of time, there is a need and a demand for a protective coating for application onto a substrate metal, such as of ferrous metal, to provide corrosion protection prope
Jayaweera Palitha
Lau Kai-Hung
Sanjurjo Angel
Fejer Mark E.
Gas Research Institute
McKinnon Terrell L
LandOfFree
Corrosion resistance treatment of condensing heat exchanger... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Corrosion resistance treatment of condensing heat exchanger..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Corrosion resistance treatment of condensing heat exchanger... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3272610