Correction of coriolis flowmeter measurements due to...

Measuring and testing – Volume or rate of flow – Mass flow by imparting angular or transverse momentum to the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S03200R, C073S861357

Reexamination Certificate

active

06327914

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to Coriolis effect mass flowmeters. More particularly, the Coriolis effect mass flowmeters contain self diagnostics that improve the accuracy obtainable from the meters in measuring two phase flow including mixtures of gas and liquid, or in identifying measurements that may be affected by the deposition of scale or wax inside the meter.
2. Statement of the Problem
Coriolis flowmeters directly measure the rate of mass flow through a conduit. As disclosed in the art, such as in U.S. Pat. No. 4,491,025 (issued to J. E. Smith et al. on Jan 1, 1985 and hereinafter referred to as the U.S. Pat. No. 4,491,025) and Re. 31,450 (issued to J. E. Smith on Feb. 11, 1982 and hereinafter referred to as the U.S. Pat. No. Re. 31,450), these flowmeters have one or more flowtubes of straight or curved configuration. Each flowtube configuration in a Coriolis mass flowmeter has a set of natural vibration modes, which may be of a simple bending, torsional or coupled type. Fluid flows into the flowmeter from the adjacent pipeline on the inlet side, is directed through the flowtube or tubes, and exits the flowmeter through the outlet side of the flowmeter. The natural vibration modes of the vibrating, fluid filled system are defined in part by the combined mass of the flowtubes and the fluid within the flowtubes. Each flow conduit is driven to oscillate at resonance in one of these natural modes.
When there is no flow through the flowmeter, all points along the flowtube oscillate with identical phase. As fluid begins to flow, Coriolis accelerations cause each point along the flowtube to have a different phase. The phase on the inlet side of the flowtube lags the driver, while the phase on the outlet side leads the driver. Sensors can be placed on the flowtube to produce sinusoidal signals representative of the motion of the flowtube. The phase difference between two sensor signals is proportional to the mass flow rate of fluid through the flowtube. A complicating factor in this measurement is that the density of typical process fluids varies. Changes in density cause the frequencies of the natural modes to vary. Since the flowmeter's control system maintains resonance, the oscillation frequency varies in response. Mass flow rate in this situation is proportional to the ratio of phase difference and oscillation frequency.
U.S. Pat. No. Re. 31,450 discloses a Coriolis flowmeter that avoids the need of measuring both phase difference and oscillation frequency. Phase difference is determined by measuring the time delay between level crossings of the two sinusoidal signals. When this method is used, the variations in the oscillation frequency cancel, and mass flow rate is proportional to the measured time delay. This measurement method is hereinafter referred to as a time delay measurement.
A problem in currently available Coriolis flow measurement apparatus is a limited suitability to gas applications. Gases are less dense than liquids and consequently, at the same flow velocities, smaller Coriolis accelerations are generated. This situation requires a higher sensitivity flowmeter. Alternatively, a flowmeter with conventional sensitivity could be used, if the flow velocity is increased to achieve the same Coriolis accelerations. Unfortunately, this alternative leads to a flowmeter having a sensitivity that is not constant.
The problems with gas flow through Coriolis flowmeters are exacerbated in systems with multiphase flow including liquids and gas. The gas damps the system with the effect of reducing sensitivity to measurement. This damping effect can be so severe that the meter cannot perform flow measurements.
Situations involving the use of Coriolis flowmeters to measure multiphase flow often arise in the petroleum industry where oil wells produce oil, gas, and water. Gas wells similarly produce gas, condensate and water. US Pat. No. 5,654,502 describes a well test system where a manifold is configured to flow a selected well through a test separator, which separates the production from the well into respective portions including gas, oil or condensate, and water. A Coriolis flowmeter is used to measure the mass flow rate of the respective oil and water components. The accuracy of the flowmeter measurements is enhanced by using an electronically derived water cut measurement to correct the measured density of the segregated oil phase for residual water content. This correction process is difficult or impossible to use, in some situations, because not all wells are coupled with a test separator. It is sometimes desirable to measure the flow from a well directly and without the use or expense of a test separator. In these situations, the presence of gas in the system can be a critical limiting factor in the accuracy of measurements that are obtainable from the meter.
U.S. Pat. No. 5,029,482 teaches the use of empirically-derived correlations that are obtained by flowing combined gas and liquid flow streams having known mass percentages of the respective gas and liquid components through a Coriolis meter. The empirically-derived correlations are then used to calculate the percentage of gas and the percentage of liquid in a combined gas and liquid flow stream of unknown gas and liquid percentages based upon a direct Coriolis measurement of the total mass flow rate. The '482 patent does not address remediation of the effects of gas damping in the system measurements, though this damping effect may have an effect upon the empirical correlations.
Accordingly, there is a true need for a Coriolis flowmeter that is less sensitive to the effects of gas damping upon density measurements in multiphase flow.
SOLUTION
The present invention overcomes the problems outlined above and advances the art by providing a Coriolis flowmeter that is less sensitive to the effects of gas damping upon density measurements in multiphase flow. The meter electronics are programmed for special processing that compares drive gain against a threshold value as an indicator of multiphase flow.
The Coriolis flowmeter is broadly capable of use as a vibrating densitometer in multiphase flow environments including combinations of gas and liquids, gas and solids, or solids and liquids. The flowmeter includes at least one flowtube and a driver for vibrating the flowtube at a fundamental frequency corresponding to a density of material flowing through the flowtube. The meter electronics monitor drive gain in the vibrating flowtube for a change in value to determine the existence of multiphase flow through said flowtube. This change in value is typically a comparison against a threshold value where multiphase flow including gas and liquid is indicated by the drive gain exceeding the threshold value. A second comparison may be made against a second threshold value to indicate the existence of multiphase flow including gas and solids, liquid and solids, or liquid, gas and solids, which may exhibit similar damping effects to those of gas and liquid systems. The meter electronics respond to the existence of multiphase flow in said flowtube for the duration of the multiphase flow. This response is typically the provision of historical density data for use in determining volumetric flow rates from real time mass flow rate data from said meter. Other useful density values for use during the interval of damped multiphase flow may include density measurements obtained from selected components of the multiphase fluid.
The historical density values for use during the interval of damped multiphase flow are typically averaged over an interval of time to provide an average density value. These values may also be subjected to statistical analysis to eliminate or reduce spurious measurements from being included in the average density value. As an alternative to using historical measurement data, density values for representative fluids may be obtained from laboratory measurements or from empirically derived correlations for fluid properties including density.
The Co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Correction of coriolis flowmeter measurements due to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Correction of coriolis flowmeter measurements due to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Correction of coriolis flowmeter measurements due to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573138

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.