Corn plants comprising event PV-ZMGT32(nk603)

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S468000, C800S278000, C800S298000, C800S300000, C800S320100

Reexamination Certificate

active

06825400

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of plant molecular biology, specifically the invention relates to a DNA construct for conferring glyphosate tolerance to a plant. The invention more specifically relates to a glyphosate tolerant corn plant PV-ZMGT32(nk603) and to assays for detecting the presence of corn plant PV-ZMGT32(nk603) DNA in a sample and compositions thereof.
BACKGROUND OF THE INVENTION
This invention relates to the glyphosate herbicide tolerant corn (
Zea mays
) plant PV-ZMGT32(nk603) and to the DNA plant expression construct of corn plant PV-ZMGT32(nk603) and the detection of the transgene/genomic insertion region in corn PV-ZMGT32(nk603) and progeny thereof.
Corn is an important crop and is a primary food source in many areas of the world. The methods of biotechnology have been applied to corn for improvement of the agronomic traits and the quality of the product. One such agronomic trait is herbicide tolerance, in particular, tolerance to glyphosate herbicide. This trait in corn has been conferred by the expression of a transgene in the corn plants (U.S. Pat. No. 6,040,497).
The expression of foreign genes in plants is known to be influenced by their chromosomal position, perhaps due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulation elements (e.g., enhancers) close to the integration site (Weising et al., Ann. Rev. Genet 22:421-477, 1988). For this reason, it is often necessary to screen a large number of events in order to identify an event characterized by optimal expression of a introduced gene of interest. For example, it has been observed in plants and in other organisms that there may be a wide variation in levels of expression of an introduced genes among events. There may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct. For this reason, it is common to produce hundreds to thousands of different events and screen those events for a single event that has desired transgene expression levels and patterns for commercial purposes. An event that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions.
It would be advantageous to be able to detect the presence of a particular event in order to determine whether progeny of a sexual cross contain a transgene of interest. In addition, a method for detecting a particular event would be helpful for complying with regulations requiring the premarket approval and labeling of foods derived from recombinant crop plants, for example. It is possible to detect the presence of a transgene by any well known nucleic acid detection method such as the polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. These detection methods generally focus on frequently used genetic elements, such as promoters, terminators, marker genes, etc. As a result, such methods may not be useful for discriminating between different events, particularly those produced using the same DNA construct unless the DNA sequence of chromosomal DNA adjacent to the inserted DNA (“flanking DNA”) is known. An event-specific PCR assay is discussed, for example, by Windels et al. (Med. Fac. Landbouww, Univ. Gent 64/5b:459-462, 1999), who identified glyphosate tolerant soybean event 40-3-2 by PCR using a primer set spanning the junction between the insert and flanking DNA, specifically one primer that included sequence from the insert and a second primer that included sequence from flanking DNA.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a DNA construct is provided that when expressed in plant cells and plants confers tolerance to glyphosate herbicide. This invention relates preferably to the methods for producing and selecting a glyphosate tolerant monocot crop plant. The DNA construct consists of two transgene expression cassettes. The first expression cassette comprising a DNA molecule of a rice (
Oryzae sativa
) actin 1 promoter and rice actin 1 intron operably joined to a DNA molecule encoding a chloroplast transit peptide sequence, operably connected to a DNA molecule encoding a glyphosate resistant 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), operably connected to a DNA molecule comprising a 3′ transcriptional terminator. The second transgene expression cassette of the DNA construct comprising a DNA molecule of the cauliflower mosaic virus (CaMV) 35S promoter, operably connected to a DNA molecule comprising a Hsp70 intron, operably connected to a DNA molecule encoding a chloroplast transit peptide sequence, operably connected to a DNA molecule encoding a glyphosate resistant 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), operably connected to a DNA molecule comprising a 3′ transcriptional terminator.
More specifically, a DNA construct is provided that when expressed in plant cells and plants confers tolerance to glyphosate herbicide. This invention relates preferably to the methods for producing and selecting a glyphosate tolerant corn plant. The DNA construct consists of two transgene expression cassettes. The first expression cassette consisting of a DNA molecule of a rice (
Oryzae sativa
) actin 1 promoter and rice actin 1 intron operably joined to a DNA molecule encoding an
Arabidopsis
EPSPS chloroplast transit peptide sequence, operably connected to a DNA molecule encoding a glyphosate resistant 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) isolated from
Agrobacterium tumefaciens
sp. strain CP4, operably connected to a DNA molecule consisting of a nopaline synthase transcriptional terminator. The second transgene expression cassette consisting of a DNA molecule of the cauliflower mosaic virus (CaMV) 35S promoter containing a tandem duplication of the enhancer region, operably connected to a DNA molecule consisting of a
Zea mays
Hsp70 intron, operably connected to a DNA molecule encoding an Arabidopsis EPSPS chloroplast transit peptide sequence, operably connected to a DNA molecule encoding a glyphosate resistant 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) isolated from
Agrobacterium tumefaciens
sp. strain CP4, operably connected to a DNA molecule consisting of a nopaline synthase transcriptional terminator.
According to another aspect of the invention, compositions and methods are provided for detecting the presence of the transgene/genomic insertion region from a novel corn plant designated PV-ZMGT32(nk603). DNA molecules are provided that comprise at least one junction sequence of PV-ZMGT32(nk603) selected from the group consisting of 5′ TGTAGCGGCCCACGCGTGGT 3′ (SEQ ID NO:9), 5′ TACCACGCGACACACTTC 3′ (SEQ ID NO: 10), and 5′ TGCTGTTCTGCTGACTTT 3′ (SEQ ID NO: 11) and complements thereof; wherein a junction sequence spans the junction between heterologous DNA inserted into the genome and the DNA from the corn cell flanking the insertion site and is diagnostic for the event. The corn plant and seed comprising these molecules is an aspect of this invention.
A novel DNA molecule 5′ ACCAAGCTTTTATAATAG 3′ (SEQ ID NO: 12) and the complement thereof, wherein this DNA molecule is novel in PV-ZMGT32(nk603) and its progeny. The corn plant and seed comprising this molecule is an aspect of this invention.
According to another aspect of the invention, DNA molecules that comprise the novel transgene/genomic insertion region, SEQ ID NO:7 and SEQ ID NO:8 and are homologous or complementary to SEQ ID NO:7 and SEQ ID NO:8 are an aspect of this invention.
D

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Corn plants comprising event PV-ZMGT32(nk603) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Corn plants comprising event PV-ZMGT32(nk603), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Corn plants comprising event PV-ZMGT32(nk603) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3343317

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.