Measuring and testing – Volume or rate of flow – Mass flow by imparting angular or transverse momentum to the...
Reexamination Certificate
2002-04-30
2003-11-18
Patel, Harshad (Department: 2855)
Measuring and testing
Volume or rate of flow
Mass flow by imparting angular or transverse momentum to the...
C073S861355
Reexamination Certificate
active
06647807
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a Coriolis mass flow/density sensor with a single straight measuring tube.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 5,531,126 describes a Coriolis massflow/density sensor which can be installed in a pipe by means of a connecting element at the inlet end and a connecting element at the outlet end and through which a fluid to be measured flows during operation, comprising:
a single straight measuring tube having a longitudinal axis and extending between and fixed to the connecting elements;
a straight dummy tube extending parallel to the measuring tube and not traversed by the fluid;
a nodal plate on an inlet side and a nodal plate on an outlet side,
one of which fixes the inlet-end portion of the measuring tube to the corresponding end portion of the dummy tube, and
the other of which fixes the outlet-end portion of the measuring tube to the corresponding end portion of the dummy tube, so that the measuring tube and the dummy tube are arranged side by side;
a support tube having its ends fixed to the respective connecting elements and having a longitudinal axis of symmetry parallel to the longitudinal axis of the measuring tube; and
means which act only on the dummy tube to excite the measuring tube into flexural vibrations whose frequency is not, however, identical with the resonance frequency of the measuring tube, with the measuring tube and the dummy tube vibrating in antiphase.
This prior-art Coriolis mass flow/density sensor is mechanically balanced only in a narrow range of density values—approximately± 5% of a rated density—for a given dimensional design, i.e., only at these density values will forces originating from the vibrations of the measuring tube be practically not transmitted via the connecting elements to the pipe. The above range is extended by the excitation “beside” the resonance frequency, but substantially more excitation energy is required than for excitation at the resonance frequency. The less balanced the mass flow/density sensor is, the more such forces and vibrational energy will be transmitted to the pipe; thus, however, vibrational energy is lost and measuring inaccuracy increases.
This unbalance has a disturbing effect not only in case of temperature-induced changes in the density of one and the same fluid but also particularly during the measurement of different fluids flowing in the pipe at different times, for example one after another.
SUMMARY OF THE INVENTION
Since Coriolis mass flow/density meters should be suitable for measuring as wide a range of very different fluids with different densities as possible, it is therefore important to provide Coriolis mass flow/density sensors which are balanced in the above sense over a wide density range and thus measure accurately.
To accomplish this, a first variant of the invention provides a Coriolis mass flow/density sensor which can be installed in a pipe and through which a fluid to be measured flows during operation, comprising:
a single straight measuring tube having a longitudinal axis, an inlet end, and an outlet end;
a support fixed to the inlet end and the outlet end,
a longitudinal centroidal line of which is parallel to, but does not coincide with, the longitudinal axis of the measuring tube;
a cantilever
which is fixed to the measuring tube midway between the inlet end and the outlet end, and
which during operation causes the measuring tube to vibrate either in a first fundamental flexural mode or in a second fundamental flexural mode having a higher frequency than the first fundamental flexural mode;
an excitation arrangement for constantly exciting the measuring tube in the second fundamental flexural mode
which is disposed approximately midway between the inlet end and the outlet end; and
a sensor for the motions of the measuring tube on an inlet side and a sensor for the motions of the measuring tube on an outlet side which are located between the middle of the measuring tube and the inlet end and outlet end, respectively, at the same distance therefrom.
In a first preferred embodiment of the first variant of the invention, the support is a cylindrical tube having a wall of uniform thickness and a longitudinal axis which is parallel to, but does not coincide with, the longitudinal axis of the measuring tube.
In a second preferred embodiment of the first variant of the invention, the support is a cylindrical tube having a wall of only partially uniform thickness and a longitudinal axis which is parallel to, or coincides with, the longitudinal axis of the measuring tube, with the tube wall in the region of a first generating line diametrically opposite the cantilever being at least partially thicker than the uniform wall thickness and/or the tube wall in the region of a first generating line adjacent to the cantilever being at least partially thinner than the uniform wall thickness in order to form a counterbalance.
According to a development of the second embodiment of the first variant of the invention, a counterweight is attached, partially inserted in, or integrally formed on the tube wall diametrically opposite the cantilever.
In a third preferred embodiment of the first variant of the invention, which can be used in the above embodiments and the development of the second embodiment, the cantilever has the form of a plate or disk having a bore by means of which the plate or disk is slipped over the measuring tube. The plate or disk preferably consists of a semicircular ring portion and a rectangular portion formed thereon, the semicircular ring portion being coaxial with the bore. Advantageously, the plate or disk has a thickness equal to approximately half the diameter of the measuring tube.
According to a development of the first variant of the invention and its embodiments, the measuring tube is provided with an annular rib on the inlet side and an annular rib on the outlet side which are disposed at the locations of the respective sensors.
In a fourth preferred embodiment of the first variant of the invention, the excitation arrangement consists of
a first portion which acts on the measuring tube in the direction of the intersection of a longitudinal axis of symmetry of the cantilever and the longitudinal axis of the measuring tube with a first excitation force, and a
second portion, which acts on an end of the cantilever remote from the measuring tube with a second excitation force directed opposite to the first excitation force.
A second variant of the invention provides a Coriolis mass flow/density sensor which can be installed in a pipe and through which a fluid to be measured flows during operation, comprising:
a single straight measuring tube having an inlet end and an outlet end;
an inlet plate fixed at the inlet end and surrounding the measuring tube;
and outlet plate fixed at the outlet end and surrounding the measuring tube;
a first support plate fixed to the inlet plate and the outlet plate and extending parallel to a first generating line of the measuring tube;
a second support plate fixed to the inlet plate and the outlet plate and extending parallel to a second generating line of the measuring tube diametrically opposite the first generating line;
a cantilever
which is fixed to the measuring tube midway between the inlet end and the outlet end, and
which during operation causes the measuring tube to vibrate either in a first fundamental flexural mode or in a second fundamental flexural mode having a higher frequency than the first fundamental flexural mode;
a longitudinal bar located opposite the cantilever and fixed to the first and second support plates, said longitudinal bar acting as a counterbalance;
an excitation arrangement
which constantly excites the measuring tube in the second fundamental flexural mode, and
which is disposed approximately midway between the inlet end and the outlet end; and
a sensor for the motions of the measuring tube on an inlet side and a sensor for the motions of the measuring tube on an outlet side which are located between the middle of the measuring tube and the inlet end
Bitto Ennio
Drahm Wolfgang
Koudal Ole
Matt Christian
Schütze Christian
Bose McKinney & Evans LLP
Endress+Hauser Flowtec AG
Patel Harshad
LandOfFree
Coriolis mass flow/density sensor with single straight... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coriolis mass flow/density sensor with single straight..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coriolis mass flow/density sensor with single straight... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3149121