Data processing: measuring – calibrating – or testing – Measurement system – Accelerometer
Reexamination Certificate
2000-07-25
2003-02-18
Shah, Kamini (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Accelerometer
C701S004000, C073S019030
Reexamination Certificate
active
06522992
ABSTRACT:
BACKGROUND OF THE PRESENT INVENTION
1. Field of the Present Invention
The present invention relates to motion measurement, and more particularly to a motion inertial measurement unit in micro size that can produce highly accurate, digital angular increments, velocity increments, position, velocity, attitude, and heading measurements of a carrier under dynamic environments.
2. Description of Related Arts
Generally, an inertial measurement unit (IMU) is employed to determine the motion of a carrier. In principle, an inertial measurement unit relies on three orthogonally mounted inertial angular rate producers and three orthogonally mounted acceleration producers to obtain three-axis angular rate and acceleration measurement signals. The three orthogonally mounted inertial angular rate producers and three orthogonally mounted acceleration producers with additional supporting mechanical structure and electronic devices. are conventionally called an Inertial Measurement Unit (IMU). The conventional IMUs may be cataloged into Platform IMU and Strapdown IMU.
In the platform IMU, angular rate producers and acceleration producers are installed on a stabilized platform. Attitude measurements can be directly picked off from the platform structure. But attitude rate measurements cannot be directly obtained from the platform. Moreover, there are highly accurate feedback control loops associated with the platform.
Compared with the platform IMU, in the strapdown IMU, angular rate producers and acceleration producers are directly strapped down with the carrier and move with the carrier. The output signals of the strapdown angular rate producers and acceleration producers are expressed in the carrier body frame. The attitude and attitude rate measurements can be obtained by means of a series of computations.
A conventional IMU uses a variety of inertial angular rate producers and acceleration producers. Conventional inertial angular rate producers include iron spinning wheel gyros and optical gyros, such as Floated Integrating Gyros (FIG), Dynamically Tuned Gyros (DTG), Ring Laser Gyros (RLG), Fiber-Optic Gyros (FOG), Electrostatic Gyros (ESG), Josephson Junction Gyros (JJG), Hemisperical Resonating Gyros (HRG), etc. Conventional acceleration producers include Pulsed Integrating Pendulous Accelerometer (PIPA), Pendulous Integrating Gyro Accelerometer (PIGA), etc.
The processing method, mechanical supporting structures, and electronic circuitry of conventional IMUs vary with the type of gyros and accelerometers employed in the IMUs. Because conventional gyros and accelerometers have a large size, high power consumption, and moving mass, complex feedback control loops are required to obtain stable motion measurements. For example, dynamic-tuned gyros and accelerometers need force-rebalance loops to create a moving mass idle position. There are often pulse modulation force-rebalance circuits associated with dynamic-tuned gyros and accelerometer based IMUs. Therefore, conventional IMUs commonly have the following features:
High cost,
Large bulk (volume, mass, large weight),
High power consumption,
Limited lifetime, and
Long turn-on time.
These present deficiencies of conventional IMUs prohibit them from use in the emerging commercial applications, such as phased array antennas for mobile communications, automotive navigation, and handheld equipment.
New horizons are opening up for inertial sensor device technologies. MEMS (MicroElectronicMechanicalSystem) inertial sensors offer tremendous cost, size, and reliability improvements for guidance, navigation, and control systems, compared with conventional inertial sensors.
MEMS, or, as stated more simply, micromachines, are considered as the next logical step in the silicon revolution. It is believed that this coming step will be different, and more important than simply packing more transistors onto silicon. The hallmark of the next thirty years of the silicon revolution will be the incorporation of new types of functionality onto the chip structures, which will enable the chip to, not only think, but to sense, act, and communicate as well.
Prolific MEMS angular rate sensor approaches have been developed to meet the need for inexpensive yet reliable angular rate sensors in fields ranging from automotive to consumer electronics. Single input axis MEMS angular rate sensors are based on either translational resonance, such as tuning forks, or structural mode resonance, such as vibrating rings. Moreover, dual input axis MEMS angular rate sensors may be based on angular resonance of a rotating rigid rotor suspended by torsional springs. Current MEMS angular rate sensors are primarily based on an electronically-driven tuning fork method.
More accurate MEMS accelerometers are the force rebalance type that use closed-loop capacitive sensing and electrostatic forcing. Draper's micromechnical accelerometer is a typical example, where the accelerometer is a monolithic silicon structure consisting of a torsional pendulum with capacitive readout and electrostatic torquer. Analog Device's MEMS accelerometer has an integrated polysilicon capacitive structure fabricated with on-chip BiMOS process to include a precision voltage reference, local oscillators, amplifiers, demodulators, force rebalance loop and self-test functions.
Although the MEMS angular rate sensors and MEMS accelerometers are available commercially and have achieved micro chip-size and low power consumption, however, there is not yet available high performance, small size, and low power consumption IMUs.
SUMMARY OF THE PRESENT INVENTION
A main objective of the present invention is to provide a core inertial measurement unit, which can produce digital highly accurate angular increment and velocity increment measurements of a carrier from voltage signals output from the specific angular rate and acceleration producers thereof, so as to obtain highly accurate, position, velocity, attitude, and heading measurements of the carrier under dynamic environments.
Another objective of the present invention is to provide a core inertial measurement unit (IMU) which successfully incorporates the MEMS technology.
Another objective of the present invention is to provide a core inertial measurement unit, wherein output signals of angular rate producer and acceleration producer are exploited, and are preferably output from emerging MEMS (MicroElectronicMechanicalSystem) angular rate sensor arrays and acceleration sensor arrays. These outputs are proportional to rotation and translational motion of the carrier, respectively. Compared with a conventional IMU, the present invention utilizes a feedforward open-loop signal processing scheme to obtain highly accurate motion measurements by means of signal integration, digitizing, temperature control and compensation, sensor error and misalignment calibrations, and dramatically shrinks the size of mechanical and electronic hardware and power consumption, meanwhile, obtains highly accurate motion measurements.
Although the present invention can use existing angular rate devices and acceleration devices, the present invention specifically selects MEMS angular rate devices and acceleration devices to assemble a core IMU, wherein the core IMU has the following unique features:
(1) Attitude Heading Reference System (AHRS) Capable Core Sensor Module.
(2) Miniaturized (Length/Width/Height) and Light Weight.
(3) High Performance and Low Cost.
(4) Low Power Dissipation.
(5) Shock resistant and vibration tolerant.
(6) Dramatic Improvement In Reliability (microelectromechanical systems—MEMS).
Another objective of the present invention is to provide a core IMU rendering into an integrated micro land navigator that has the following unique features:
(1) Miniature, light weight, low power, and low cost.
(2) AHRS, odometer, integrated GPS chipset and flux valve.
(3) Integration filter for sensor data fusion and zero velocity updating.
(4) Typical applications: automobiles, railway vehicles, miniature land vehicles, robots, unmanned ground vehicles, personal navigators, and mi
Lin Ching-Fang
McCall Hiram
American GNC Corporation
Chan Raymond Y.
David and Raymond Patent Group
Shah Kamini
LandOfFree
Core inertial measurement unit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Core inertial measurement unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Core inertial measurement unit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3177246