Copper-chromium catalyzed hydrogenation of polyunsaturated oils

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S141000

Reexamination Certificate

active

06716155

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a process for the hydrogenation of polyunsaturated oils to produce products having a high monounsaturated fatty acid (monoene) content, wherein the process utilizes a reusable copper-chromium containing catalyst to reduce the degree of unsaturation in the oil. The resulting product has improved stability and a longer shelf life.
2. Related Art
Polyunsaturated oils are hydrogenated to reduce the degree of unsaturation in the oil, prior to subsequent processing to obtain secondary products, such as food grade oils, additives, lubricants and the like.
Plant oils are useful as components for many nutritional products such as nutraceuticals, and vegetable oils. However, before the oils can be used commercially, particularly for nutritional use, the components responsible for offensive odors, poor taste and poor stability must be removed. The major component contributing to these unfavorable characteristics is the content of polyunsaturated oils, particularly linolenate, present in the oil. The content of linolenate (C
18:3
) in the oil, therefore, is reduced to the more desirable component, monounsaturated fatty acid (C
18:1
).
Reduction of the double bond content in polyunsaturated oils is traditionally carried out by partial hydrogenation, catalyzed by a transition metal catalyst. Various transition metal catalyst, such as nickel, copper, cobalt, palladium and platinum have been used as hydrogenation catalyst. However, copper-chromium combination catalysts (i.e., copper chromite catalyst) have been found to be more selective for production of the monoene. The hydrogenation of the polyunsaturated oils with copper chromite stops with the monoene, with little to no production of the saturated fatty acid in the oil. Popescu et al.,
JAOCS
46(2):97-99 (1969); Koritala et al.,
JAOCS
43(2):86-89 (1966).
In a later study, Koritala hydrogenated 300 mL samples of soybean oil at moderate pressures (i.e., 30 psig), in the presence of 0.1 and 0.5% copper-chromium catalyst, at temperatures of 170 and 200° C. Koritala, et al.,
JAOCS
43(9):556-558 (1966). For those catalysts tested, the average monoene conversion at 170° C. was 37%, and that for 200° C. was 34%. Id. The results, therefore, show that the conversion and selectivity are better at lower temperatures. Id. at 557.
The above studies show that copper-chromium containing catalysts are suitable for hydrogenation of polyunsaturated oils. However, the percent conversion to monoene under the above-described reaction conditions is low (i.e., 34-37%). Another drawback to the above-described processes is that transition metal hydrogenation catalyst are susceptible to poisoning during the reaction process, which decreases the selectivity, yield and stability of the hydrogenated product. For example, Moulton et al. used a heat activated copper-chromium-barium catalyst to hydrogenate soybean oil for five consecutive hydrogenations, without the addition of additional catalyst to the process. Moulton et al.
JAOCS
43(12):662-666 (1969). A progressive drop in the selectivity for the conversion for each hydrogenation was observed. Id. at 664. Additionally, for the second hydrogenation, the reaction time to obtain a product having an Iodine Value (IV) of 120 was about twice that of the first hydrogenation. Id.
Generally, once poisoned, the catalyst cannot be reused, or it must be reactivated, which is time consuming and costly. Typical catalyst poisons are chlorine (see Heldal et al
JAOCS
59(9):396-398 (1982)), sulfur and free fatty acids (see U.S. Pat. No. 5,250,713) and water vapor resulting from the reduction of the catalyst, and oxidation products formed during hydrogenation (see Johansson et al.
JAOCS
56(12):981-986 (1979)). The oxidation products from fatty acids also contribute to the unfavorable taste and odor of the soybean oil, and must be removed prior to processing into food grade oils. Additionally, trace amounts of copper, in the hydrogenated oil, further contribute to the unfavorable taste, odor and stability of soybean oil, and must be removed.
In view of the above, it would be desirable to utilize a catalyst that is resistant to poisoning and can be reused after an initial hydrogenation, without a need for regeneration or replacement with fresh catalyst. It would further be desirable to obtain from a polyunsaturated oil hydrogenation process, a monounsaturated fatty acid percent conversion of greater than about 60%, and preferably greater than about 70%, and more preferably greater than about 80%.
SUMMARY OF THE INVENTION
A method for improving the resistance of copper-chromium catalysts to poisoning during hydrogenation, and additionally improving the percent conversion of the hydrogenated polyunsaturated oil to the monounsaturated form has been discovered by applicants, and is the focus of the invention described below.
The invention is directed to a process for hydrogenating a polyunsaturated oil, comprising:
(a) reacting said polyunsaturated oil with hydrogen in the presence of a copper-chromium containing catalyst, at a temperature of from about 200-300° C. and a pressure of from about 300-500 psig, for about 3-8 hours;
(b) removing said catalyst from a product obtained in (a); and
(c) recycling said removed catalyst obtained from (b) to a subsequent hydrogenation reaction, wherein said hydrogenation reaction is carried out as described in (a).
DETAILED DESCRIPTION OF THE INVENTION
In a first embodiment of the invention, applicants have discovered a process for hydrogenating a polyunsaturated oil, wherein the catalyst is reusable. The process of this embodiment comprises:
(a) reacting said polyunsaturated oil with hydrogen in the presence of a copper-chromium containing catalyst, at a temperature of from about 200-300° C. and a pressure of from about 300-500 psig, for about 3-8 hours;
(b) removing said catalyst from a product obtained in (a); and
(c) recycling said removed catalyst obtained from (b) to a subsequent hydrogenation reaction, wherein said hydrogenation reaction is carried out as described in (a).
Various polyunsaturated oils from animal and plant sources may be used in the hydrogenation process. Polyunsaturated oils derived from plant sources are preferred. Preferred polyunsaturated oils, obtained from plant sources, may be selected from babassu, coconut, canola, corn, cotton seed, linseed, oiticica, olive, peanut, perilla, rapeseed, safflower, sesame, soybean, sunflower seed, tung and wheat-germ. Of these polyunsaturated oils, canola, corn and soybean are particularly preferred. Soybean oil is most particularly preferred. The plant source from which these oils are obtained, may also be a genetically engineered or modified plant, which may have a fatty acid compositional content that is different than that of a non-genetically engineered or non-modified plant of the same species.
In a second embodiment of the invention, the once recycled catalyst may be reused in subsequent hydrogenation reactions as described in (a) above, without further treatment. Under the conditions of the present invention, the number of times the catalyst may be reused will depend on how long it takes the catalyst to lose a significant amount of its activity and selectivity for conversion to the monoenes. In this instance, the term “significant amount” is defined as a point during the re-use of the catalyst, where a loss of catalytic activity and/or selectivity begins to produce a less than desirable hydrogenated product.
Typically, for conversion to the monoenes, the catalyst may be reused until a loss of at least about 50% of catalytic activity, catalytic selectivity or both, is obtained. The number of times the catalyst may be reused is from about 1-100 times and preferably 4-20 times. Factors that may affect the activity and/or selectivity of the catalyst include, but are not limited to, impurities present in the feedstock oil or incomplete removal of the catalyst from a previous re-use cycle. Generally, the number of times the catalyst may

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Copper-chromium catalyzed hydrogenation of polyunsaturated oils does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Copper-chromium catalyzed hydrogenation of polyunsaturated oils, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Copper-chromium catalyzed hydrogenation of polyunsaturated oils will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3186388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.