Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heavy metal containing doai
Reexamination Certificate
2001-07-16
2004-10-19
Nazario-Gonzalez, Porfirio (Department: 1621)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Heavy metal containing doai
C546S002000, C546S011000, C546S012000
Reexamination Certificate
active
06806289
ABSTRACT:
3. INTRODUCTION
Cancer arises in many instances in which a normal cell undergoes neoplastic transformation and becomes a malignant cell. Transformed (malignant) cells escape normal physiologic controls specifying cell phenotype and restraining cell proliferation. Transformed cells in an individual's body thus proliferate, forming a tumor (also referred to as a neoplasm). When a tumor is found, the clinical objective is to destroy malignant cells selectively while mitigating any harm caused to normal cells in the individual undergoing treatment.
Currently, three major approaches are generally followed for the clinical management of cancer in humans and other animals. Surgical resection of solid tumors, malignant nodules and or entire organs may be appropriate for certain types of neoplasia. For other types, e.g., those manifested as soluble (ascites) tumors, hematopoeitic malignancies such as leukemia, or where metastasis of a primary tumor to another site in the body is suspected, radiation or chemotherapy may be appropriate. Either of these techniques may also be used as an adjunct to surgery.
Chemotherapy is often based on the use of drugs that are selectively toxic (cytotoxic) to cancer cells. Several general classes of chemotherapeutic drugs have been developed. A first class, antimetabolite drugs, includes drugs that interfere with nucleic acid synthesis, protein synthesis, and other vital metabolic processes. Another class, genotoxic drugs, inflicts damage on cellular nucleic acids, including DNA. Two widely used genotoxic anticancer drugs that have been shown to damage cellular DNA by producing crosslinks therein are cisplatin [cis-diamminedichloroplatinum(II)] and carboplatin [diammine(1,1-cyclobutanedicarboxylato)-platinum(II)]. Cisplatin and carboplatin currently are used in the treatment of selected, diverse neoplasms of epithelial and mesenchymal origin, including carcinomas and sarcomas of the respiratory, gastrointestinal and reproductive tracts, of the central nervous system, and of squamous origin in the head and neck. Cisplatin currently is preferred for the management of testicular carcinoma and in many instances produces a lasting remission. In cisplatin chemistry, one of the significant areas of research has involved the clinical difference, as exemplified in a variety of in vitro assays, indicating that trans-diamminedichloroplatinum(II) (trans-DDP) a regioisomer of cisplatin, is not an effective chemotherapeutic.
The repair of damage to cellular DNA is an important biological process carried out by a cell's enzymatic DNA repair machinery. Unrepaired lesions in a cell's genome may impede DNA replication, impair the replication fidelity of newly synthesized DNA or hinder the expression of genes needed for cell survival. Thus, genotoxic drugs generally are considered more toxic to actively dividing cells that engage in DNA synthesis than to quiescent, nondividing cells. Indeed, cells carrying a genetic defect in one or more elements of the enzymatic DNA repair machinery have been observed to be extremely sensitive to cisplatin. Normal cells of many body tissues, however, are quiescent and commit infrequently to reenter the cell cycle and divide. Greater time between rounds of cell division generally is afforded for the repair of DNA damage in normal cells inflected by chemotherapeutic genotoxins. As a result, some selectivity is achieved for the killing of cancer cells. Many treatment regimes reflect attempts to improve selectivity for cancer cells by co-administering chemotherapeutic drugs belonging to two or more of these general classes.
In some tissues, however, normal cells divide continuously. Thus, skin, hair follicles, buccal mucosa and other tissues of the gut lining, sperm and blood-forming tissues of the bone marrow remain vulnerable to the action of genotoxic drugs, including cisplatin. These and other classes of chemotherapeutic drugs can also cause severe adverse side effects in drug-sensitive organs, such as the liver and kidneys. These and other adverse side effects seriously constrain the dosage levels and lengths of treatment regimens that can be prescribed for individuals in need of cancer chemotherapy. Such constraints can prejudice the effectiveness of clinical treatment. For example, the drug or drug combination administered must contact and affect cancer cells at times appropriate to impair cell survival. Genotoxic drugs are most effective for killing cancer cells that are actively dividing when chemotherapeutic treatment is applied. Conversely, such drugs are relatively ineffective for the treatment of slow growing tumors. Carcinoma cells of the breast, lung and colorectal tissues, for example, typically double as slowly as once every 100 days. Such slowly growing tumors present difficult chemotherapeutic targets.
Moreover, cancer cells may acquire resistance to genotoxic drugs through diminished uptake or other changes in drug metabolism, such as those that occur upon drug-induced gene amplification or expression of a cellular gene for multiple drug resistance (MDR). Resistance to genotoxic drugs may also be acquired by activation or enhanced expression of enzymes in the cancer cell's enzymatic DNA repair machinery. Therapies that employ combinations of drugs, or drugs and radiation, attempt to overcome these limitations. The pharmacokinetic profile of each chemotherapeutic drug in such a combinatorial regime, however, will in all likelihood differ. In particular, permeability of neoplastic tissue for each drug may be different. Thus, it may be difficult to achieve genotoxically effective concentrations of multiple chemotherapeutic drugs in target tissues.
In part, there remain a variety of needs to address many of the concerns discussed above. Some exemplary needs include: additional therapeutic agents with, for example, improved selectivity for destroying transformed cells in situ without significantly impairing viability of untransformed cells; enhancing effectiveness of therapeutic agents, such that satisfactory cell killing may be achieved with lower doses thereof; and therapeutic agents with improved selectivity for destroying transformed cells. The present invention provides therapeutic agents, and methods of making and using the same, that may address such concerns in certain embodiments. In certain embodiments of the subject invention, the therapeutic agents are coordination complexes that may be synthesized in a combinatorial fashion (in addition to other means). In addition to the foregoing embodiments, the coordination complexes of the present invention may be used for catalysis and other uses customary to coordination complexes.
4. SUMMARY OF THE INVENTION
In one aspect, the present invention provides methods for synthesizing a number of compounds of interest, such as transition metal-containing compounds and other coordination complexes. In certain embodiments, a library of coordination complexes may be prepared by combinatorial means that provides coordination complexes that exhibit diversity of structure and properties (e.g., chemical and biological). Utilizing combinatorial chemistry techniques, such as direct characterization, encoding, spatially addressing and deconvolution, the molecular identity of individual members of subject libraries may be ascertained in a screening format. In still other embodiments, the synthesis of compositions and libraries of them is partially or wholly automated.
In certain embodiments, the present invention provides methods for the production of coordination complexes and libraries of coordination complexes. In certain embodiments, the present invention provides synthetic strategies that allow production of large collections of coordination complexes. In still other embodiments, the coordination complexes of an inventive library are reminiscent of cisplatin in that they contain one or more atoms of platinum(II). In yet other embodiments, the subject coordination complexes may contain platinum(IV). The coordination complexes of such inventive li
Lippard Stephen J.
Ziegler Christopher J.
LandOfFree
Coordination complexes, and methods for preparing by... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coordination complexes, and methods for preparing by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coordination complexes, and methods for preparing by... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289781