Coordination catalyst systems

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

502102, 502114, 502117, 502132, 502152, 556 1, 556 27, 526141, 526150, 526283, B01J 3100, C08F 442

Patent

active

054687071

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The invention relates to coordination catalyst systems based on transition metal compounds of subgroups IV to VIII and organometallic compounds of main group III of the Periodic Table of the Elements. Such organometallic catalysts are extraordinarily versatile catalyst systems which are used in chemical reactions of and with olefinically unsaturated compounds. These are, in particular, processes for preparing olefin polymers by coordination polymerization and the metathesis of alkenes or alkynes. Of substantial industrial importance is the preparation of polyethylene, of increased density (high density polyethylene, (HDPE) and of polymers and copolymers of ethylene, propylene or other 1-alkenes and alkynes. Catalyzed metathesis enables higher unsaturated hydrocarbon compounds to be prepared in a targeted way from unsymmetric alkenes or alkynes and, from unsaturated cyclic hydrocarbon compounds, makes it possible to obtain long-chain unsaturated hydrocarbons. The latter are used, for example, in the preparation of elastomers. In addition, coordination catalysts are used in further reactions, such as in the hydrogenation of alkenes or in organometallic syntheses.
In accordance with the previous scientific knowledge of the mechanism of action of coordination catalysts, it is assumed that in each case one transition metal compound forms the catalytically active center to which the olefinically unsaturated compound binds coordinately in a first step. The olefin polymerization proceeds via a coordination of the monomers and a subsequent insertion reaction into a transition metal-carbon or a transition metal-hydrogen bond. The presence of organometallic compounds in the coordination catalyst systems or during the catalyzed reaction is required to activate the catalyst or maintain its activity by reduction, with or without alkylation or formation of a complex system. These compounds are therefore also known as co-catalysts. The compound containing the catalytically active transition metal atom is known as the primary catalyst or pre-catalyst.
The best known industrially used catalyst systems for coordination polymerization are of the "Ziegler-Natta catalyst" type and of the "Phillips catalyst" type. The former comprise the reaction product of a metal alkyl or hydride of the elements of the first three main groups of the Periodic Table and a reducible compound of a transition metal element of subgroups IV to VII, the combination most frequently used comprising an aluminum alkyl, such as triethylaluminum or diethylaluminum chloride, and titanium(IV) chloride. Newer highly active Ziegler-Natta catalysts are systems in which the titanium compound is chemically fixed to the surface of magnesium compounds such as, in particular, magnesium chloride.
As Phillips catalysts, use is made of chromium compounds which undergo reduction or activation principally by organometallic compounds and are bound to inorganic supports. Cr(VI) and Cr(II) are regarded as catalytically active species ("reduced Phillips catalyst"). Here too, the co-catalysts used are principally alkylaluminum compounds and also aluminoxane compounds.
Newer developments of particularly high-performance polymerization catalysts are based on metallocene compounds. The catalysts known as "Kaminsky catalysts" are, for example, titanocene and zircononocene compounds which are cyclopentadienyl complexes of titanium or zirconium alkyls or halides and also derivatives thereof, which are activated with the aid of aluminum, boron or phosphorus trialkyls or aluminoxane.
The practical use of these catalysts and related types in the wide variety of process variants developed can give products with sometimes very different properties. For olefin polymers, which are of generally known importance as materials, usability and field of use depend as a result of properties, on the one hand, on the type of monomers on which the polymer is based or on selection and ratio of the comonomers and the typical physical parameters characterizing the polymer, s

REFERENCES:
patent: 5075272 (1991-12-01), Martin
patent: 5120806 (1992-06-01), Martin
patent: 5235078 (1993-08-01), Pohl et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coordination catalyst systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coordination catalyst systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coordination catalyst systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1136966

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.