Cooperative minimally invasive telesurgical system

Surgery – Endoscope – With chair – table – holder – or other support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C901S002000

Reexamination Certificate

active

06659939

ABSTRACT:

BACKGROUND OF THE INVENTION
The present application is generally directed to medical devices, systems, and methods. In a particular embodiment, the invention provides telesurgical robotic systems and methods that flexibly and selectably couple input devices to robotic manipulator arms during surgery.
Advances in minimally invasive surgical technology could dramatically increase the number of surgeries performed in a minimally invasive manner. Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. The average length of a hospital stay for a standard surgery may also be shortened significantly using minimally invasive surgical techniques. Thus, an increased adoption of minimally invasive techniques could save millions of hospital days, and millions of dollars annually in hospital residency costs alone. Patient recovery times, patient discomfort, surgical side effects, and time away from work may also be reduced with minimally invasive surgery.
The most common form of minimally invasive surgery may be endoscopy. Probably the most common form of endoscopy is laparoscopy, which is minimally invasive inspection and surgery inside the abdominal cavity. In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately
½ inch or less) incisions to provide entry ports for laparoscopic surgical instruments. The laparoscopic surgical instruments generally include a laparoscope (for viewing the surgical field) and working tools. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an extension tube. As used herein, the term “end effector” means the actual working part of the surgical instrument and can include clamps, graspers, scissors, staplers, image capture lenses, and needle holders, for example. To perform surgical procedures, the surgeon passes these working tools or instruments through the cannula sleeves to an internal surgical site and manipulates them from outside the abdomen. The surgeon monitors the procedure by means of a monitor that displays an image of the surgical site taken from the laparoscope. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
There are many disadvantages relating to current minimally invasive surgical (MIS) technology. For example, existing MIS instruments deny the surgeon the flexibility of tool placement found in open surgery. Most current laparoscopic tools have rigid shafts, so that it can be difficult to approach the worksite through the small incision. Additionally, the length and construction of many endoscopic instruments reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector of the associated tool. The lack of dexterity and sensitivity of endoscopic tools is a major impediment to the expansion of minimally invasive surgery.
Minimally invasive telesurgical robotic systems are being developed to increase a surgeon's dexterity when working within an internal surgical site, as well as to allow a surgeon to operate on a patient from a remote location. In a telesurgery system, the surgeon is often provided with an image of the surgical site at a computer workstation. While viewing a three-dimensional image of the surgical site on a suitable viewer or display, the surgeon performs the surgical procedures on the patient by manipulating master input or control devices of the workstation. The master controls the motion of a servomechanically operated surgical instrument. During the surgical procedure, the telesurgical system can provide mechanical actuation and control of a variety of surgical instruments or tools having end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.
While the proposed robotic surgery systems offer significant potential to increase the number of procedures that can be performed in a minimally invasive manner, still further improvements are desirable. In particular, previous proposals for robotic surgery often emphasize direct replacement of the mechanical connection between the handles and end effectors of known minimally invasive surgical tools with a robotic servomechanism. Work in connection with the present invention suggests that integration of robotic capabilities into the operating theater can benefit from significant changes to this one-to-one replacement model. Realization of the full potential of robotically assisted surgery may instead benefit from significant revisions to the interactions and roles of team members, as compared to the roles performed by surgical team members during open and known minimally invasive surgical procedures.
In light of the above, it would be beneficial to provide improved robotic surgical devices, systems, and methods for performing robotic surgery. It would be beneficial if these improved techniques enhanced the overall capabilities of telesurgery by recognizing, accommodating, and facilitating the new roles that may be performed by the team members of a robotic surgical team. It would further be beneficial if these improvements facilitated complex robotic surgeries such as coronary artery bypass grafting, particularly while minimizing the total number of personnel (and hence the expense) involved in these robotic procedures. It would be best if these benefits could be provided while enhancing the overall control over the surgical instruments and safety of the surgical procedure, while avoiding excessive complexity and redundancy in the robotic system. Some or all of these advantages are provided by the invention described hereinbelow.
SUMMARY OF THE INVENTION
The present invention provides improved robotic surgical systems, devices, and methods. The robotic surgical systems of the present invention will often include a plurality of input devices and/or a plurality of robotic manipulator arms for moving surgical instruments. A processor will often selectably couple a selected input device to a selected manipulator arm, and allows modification of the operative association so that that same input device can be coupled to a different manipulator arm, and/or so that that same manipulator arm can be controlled by a different input device. This selective coupling, for example, allows the controller to properly assign left and right surgical end effectors to left and right input devices for use by an operator viewing the procedure via an image capture device. When the image capture devices moves, the operative associations can be revised. In some embodiments, the image capture device may be removed from one of the manipulator arms and instead mounted to another of the manipulator arms, with the left and right input devices reassigned so as to avoid an awkward surgical environment for the system operator sitting at a master control station.
The systems of the present invention will often include more manipulator arms than will be moved simultaneously by a single surgeon. In addition to an imaging arm (movably supporting an image capture device) and two manipulator arms (holding selectably designated “left” and “right” surgical tools for manipulation by left and right hands of the system operator, e.g.), one or more additional manipulator arms will often be provided to position associated surgical instrument(s). At least one of the additional manipulator arms may be maintained in a stationary configuration to stabilize or retract tissue while the operator moves left and right input devices with his or her left and right h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooperative minimally invasive telesurgical system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooperative minimally invasive telesurgical system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooperative minimally invasive telesurgical system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3125141

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.