Cooling tube with porous insert

Plastic and nonmetallic article shaping or treating: processes – Direct application of fluid pressure differential to... – Including application of internal fluid pressure to hollow...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S336000, C264S571000, C425S446000, C425S526000, C425S556000

Reexamination Certificate

active

06737007

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
The present invention relates, in general, to cooling tubes and is particularly, but not exclusively, applicable to cooling tubes used in a plastic injection-molding machine to cool plastic parts, such as plastic parisons or preforms. More particularly, the present invention relates to a structural configuration of these cooling tubes, and also to method of manufacturing and using such tubes, for example in the context of a manufacturing process for preforms made from polyethylenetetraphthlate (PET) or the like.
2. Related Art
In order to accelerate cycle time, molding machines have evolved to include post mold cooling systems that operate simultaneously with the injection molding cycle. More specifically, while one injection cycle is taking place, the post mold cooling system, typically acting in a complementary fashion with a robotic part removal device, is operative on an earlier formed set of molded articles that have been removed from the mold at a point where they are still relatively hot, but sufficiently solid to allow limited handling.
Post mold temperature conditioning (or cooling) molds, nests or tubes are well known in the art. Typically, such devices are made from aluminum or other materials having good thermal conductivity properties.
To improve cooling efficiency and cycle time performance, EP patent 0644 describes a multi-position take-out plate that has a capacity to store multiple sets of preforms for more than one injection cycle. In other words, each set of preforms is subjected to an increased period of accentuated conduction cooling by retaining the preforms in the cooling tubes for more than one injection cycle. With increased cooling, the quality of the preforms is enhanced. At an appropriate point in time, a set of preforms is ejected (usually by a mechanical ejection mechanism) from the take-out plate onto a conveyor to allow a new set of preforms to be inserted into the now vacant set of cooling tubes. EP patent 0644 is incorporated herein by reference.
In many other cooling tube arrangements, the preform (at some point, if not from the point of introduction) looses contact with the internal side walls of the cooling tube, which loss of thermal contact lessens cooling efficiency and causes uneven cooling. As will be understood, uneven cooling can induce part defects, including deformation of overall shape and crystallization of the plastic (resulting in areas that are visibly hazed). Furthermore, lack of contact can cause ovality across the circumference of the preform, while the loss of the cooling effect can mean that a preform is removed from the cooling tube at an excessively high temperature. In addition to causing surface scratching and overall dimensional deformation, premature removal of a preform at an overly high temperature can also result in the semi-molten exterior of preform sticking either to the tube or another preform; all these effects are clearly undesirable and result in part rejection and increased costs to the manufacturer.
European patent EP 0 266 804 describes an intimate fit cooling tube that is held within an end-of-arm-tool (EOAT) of a robot. The intimate fit cooling tube is water cooled and is arranged to receive a preform shortly after it has attained the glass-transition temperature that allows handling of its form without catastrophic deformation. More particularly, after the preform has undergone some cooling within the closed mold, the mold is opened, the EOAT extended between the cavity and core sides of the mold and the preform off-loaded from a core into the cooling tube that then acts to cool the exterior of the preform by a conduction process. However, as the preform cools it will shrink and therefore may loose contact across its entire circumference with the cooling tube yielding an uneven cooling effect.
U.S. Pat. Nos. 4,102,626 and 4,729,732 are further typical of prior art systems in that they show a cooling tube formed with an external cooling channel machined in the outer surface of the tube body, a sleeve is then assembled to the body to enclose the channel and provide an enclosed sealed path for the liquid coolant to circulate around the body.
WO 97/39874 discloses a tempering mold that has circular cooling channels included within its body.
EP 0 700 770 discloses another configuration that includes an inner and outer tube assembly to form cooling channels therebetween.
U.S. Pat. No. 4,208,177 discloses an injection mold cavity containing a porous element that communicates with a cooling fluid passageway subjecting the cooling fluid to different pressures to vary the flow of fluid through the porous plug.
U.S. Pat. No. 4,047,873 discloses an injection blow mold in which the cavity has a sintered porous sidewall that permits a vacuum to draw the parison into contact with the cooling tube sidewall.
U.S. Pat. No. 4,295,811 and U.S. Pat. No. 4,304,542 disclose an injection blow core having a porous metal wall portion.
A “Plastics Technology Online”article entitled “Porous Molds” Big Draw”, by Mikell Knights, printed from the Internet on Jul. 27, 2002, discloses a porous tooling composite called METAPOR™. The article discloses the technique of polishing this material to close slightly the pores to improve the surface finish and reduce the porosity.
An article from International Mold Steel, Inc., entitled “Porous Aluminum Mold Materials”, by Scott W. Hopkins, printed from the Internet on Jul. 27, 2002, also discloses porous aluminum mold materials. The materials and applications disclosed in the above two articles refer to vacuum thermoforming of plastics in the mold itself, in which preheated sheets of plastic are drawn into a single mold half via a vacuum drawn through the porous structure of the mold half.
SUMMARY OF INVENTION
According to a first aspect of the present invention, structure and/or steps are provided for a tube assembly for operating on a malleable molded plastic part. The tube assembly comprising a porous tube having a profiled inside surface, and a vacuum structure configured to cooperate with the porous tube to provide, in use, a reduced pressure adjacent the inside surface. The reduced pressure causes an outside surface of the malleable molded plastic part, locatable within the tube assembly, to contact the inside surface of the porous insert so as to allow a substantial portion of the outside surface of the malleable part, upon cooling, to attain a profile substantially corresponding to the profile of the inside surface. In an embodiment of the invention, the porous tube is cylindrically-shaped, and the vacuum structure is provided by locating the porous tube in a tube body and by providing at least one vacuum channel adjacent the outside surface of the porous tube, in use, for connection to a vacuum source.
The inside surface of the porous tube having an internal profile that is substantially (if not highly and accurately toleranced to) the final dimensions of the molded part, the porous tube of the various embodiments of the present invention effectively causes, under cooling, a re-shaping of the molded part to its exact final shape defined by the profile of the insert. Indeed, the reduced pressure/effective vacuum acting through the porous material essentially acts to draw the malleable preform into the final shape whilst ensuring that cooling is optimized by continuous surface contact with a thermally efficient heat dissipation material and path.
According to a second aspect of the present invention, injection molding machine structure and/or steps are provided with a molding structure that molds at least one plastic part. Furthermore, at least one porous cooling cavity is configured to hold and cool the at least one plastic part after it has been molded by the molding structure. At least one vacuum channel is respectively configured to provide a lower-than-ambient pressure to the at least one porous cavity to cause the at least one plastic part to contact the inside surface of the at least one porous cavity.
According to a third aspe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling tube with porous insert does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling tube with porous insert, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling tube with porous insert will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.