Cooling the upstream end plate of a high pressure turbine by...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S059000, C415S115000, C416S095000

Reexamination Certificate

active

06787947

ABSTRACT:

The invention relates to the field of ventilating high pressure turbine rotors in turbojets.
FIELD OF THE INVENTION
More precisely, the invention relates to a ventilation device for a high pressure turbine rotor of a turbomachine, said turbine being disposed downstream from the combustion chamber and comprising firstly a turbine disk presenting an internal aperture and an upstream flange for fixing to the downstream cone of a high pressure compressor, and secondly an end plate disposed upstream from said disk and separated therefrom by a cavity, said end plate comprising a solid radially inner portion likewise having an internal aperture, through which the upstream flange of said disk extends, and an upstream flange for being fixed to said downstream cone, said device comprising a first circuit for cooling blades fed with a first flow of air taken from the end of the combustion chamber and delivering said first flow of air into said cavity via main injectors disposed upstream from said end plate, and ventilation holes formed through said end plate, and a second circuit for cooling the end plate fed with a second flow of air through a discharge baffle situated downstream from the high pressure compressor, at least a fraction of said second air flow serving to ventilate the upstream top face of said end plate through a second baffle situated beneath the injectors.
BACKGROUND OF THE INVENTION
FIG. 1
shows such a high pressure turbine rotor
1
placed downstream from a combustion chamber
2
and comprising a turbine disk
3
carrying blades
4
, and an end plate
5
placed upstream from the disk
3
. The disk
3
and the end plate
5
include respective upstream flanges referenced
3
a
for the disk
3
and
5
a
for the end plate, enabling them to be fixed to the downstream end
6
of the downstream cone
7
of the high pressure compressor driven by the rotor
1
.
The disk
3
has an internal aperture
8
passing the shaft
9
of a low pressure turbine, and the end plate
5
has an internal aperture
10
surrounding the flange
3
a
of the disk
3
, and ventilation holes
11
through which a first flow C
1
of cooling air taken from the end of the combustion chamber is delivered into the cavity
12
between the downstream face of the end plate
5
and the upstream face of the disk
3
. This cooling air flow C
1
flows radially outwards and penetrates into the slots
4
a
containing the roots of the blades
4
in order or cool them. This air flow is taken from the end of the combustion chamber, flows along a duct
13
disposed in the enclosure
14
separating the end plate
5
from the end of the combustion chamber, and it is set into rotation by injectors
15
so as to lower the temperature of the air delivered into the cavity
12
.
A second flow of cooling air C
2
taken from the end of the combustion chamber flows downstream in the enclosure
16
separating the downstream cone
7
of the high pressure compressor from the inner casing
17
of the combustion chamber
2
. This air flow C
2
flows through a discharge baffle
18
and penetrates into the enclosure
14
from which a fraction C
2
a
flows through orifices
19
formed in the upstream flange
5
a
of the end plate
5
, passes through the bore
10
in the end plate
5
and serves to cool the radially inner portion thereof, joining the cooling air flow C
1
for the blades
4
. Another fraction C
2
b
of the second air flow C
2
cools the upstream face of the end plate
5
, flows round the injectors
15
, and is exhausted into the upstream purge cavity
20
of the turbine rotor
1
.
Finally, a third fraction C
2
c
of the second air flow C
2
serves to ventilate the upstream top face
21
of the end plate
5
through a second baffle
22
situated beneath the injectors
15
. This third fraction C
2
c
penetrates into the enclosure
23
situated downstream from the second baffle
22
between the end plate
5
and the injectors
15
, and it is exhausted into the upstream purge cavity
20
of the turbine rotor
1
through a third baffle
24
situated above the injectors
15
, where it mixes with the first air flow C
1
.
The second air flow C
2
serves to cool the downstream cone
7
, the shaft connecting the high pressure compressor to the high pressure turbine, and the end plate
5
. This second air flow flowing axially in an annular space defined by stationary walls secured to the combustion chamber and rotary walls secured to the rotor is subjected to heating due to the power dissipated between the rotor and the stator.
In order to lower the temperature of the upstream end plate so as to comply with its mechanical strength specifications, it is therefore necessary to increase the flow rate of the air C
2
passing through the discharge baffle
18
situated downstream from the high pressure compressor, and to dump it either into the blade cooling circuit or else into the turbine flow upstream from the high pressure turbine wheel. This increase in flow rate increases the temperature of the cooling air for the blades because heated air is dumped into the blade cooling circuit, and reduces the performance of the turbine because of the air dumped into the turbine stream.
In addition, the air flow C
2
c
for cooling the end plate downstream from the second baffle
22
situated beneath the injectors
15
is difficult to control since it is subjected to variations in the clearance through the discharge baffle
18
, through the second baffle
22
, and through the third baffle
24
situated above the injectors
15
as occurs in operation over the lifetime of the engine.
The temperature of the upstream face of the end plate downstream from the second baffle is thus quite high and is poorly controlled. This makes it necessary to use special materials for making the end plate and requires suitable dimensioning.
OBJECT AND SUMMARY OF THE INVENTION
The object of the invention is to lower the temperature of the upstream face of the end plate in order to make it easier to dimension for overspeed, to increase its lifetime, and to be able to use a low cost material.
According to the invention, this object is achieved by the fact that said device further comprises a branch connection between the first circuit and the enclosure situated downstream from the second baffle, said branch connection delivering a third flow of air for cooling the upstream top face of the radially inner portion of said end plate, said third flow of air being entrained into pre-rotation by means of additional injectors.
This third air flow that is pre-entrained and injected downstream from the baffle under the main injectors thus serves to reduce the relative total temperature of the air cooling the upstream face of the end plate downstream from the second baffle. This third flow of air mixes with the leakage flow from the baffle under the injectors and is exhausted downstream from the main injectors of the turbine into the circuit for feeding the high pressure turbine wheels.
The air injected into the turbine wheel feed circuit is thus cooler than the air injected in the state of the art.
Advantageously, the additional injectors are made in the form of bores that are tangentially inclined in the direction of rotation of the rotor.
Preferably, said bores take air from the main injectors and deliver it immediately downstream of the second baffle.


REFERENCES:
patent: 3832090 (1974-08-01), Matto
patent: 4466239 (1984-08-01), Napoli et al.
patent: 4657482 (1987-04-01), Neal
patent: 4807433 (1989-02-01), Maclin et al.
patent: 4822244 (1989-04-01), Maier et al.
patent: 5143512 (1992-09-01), Corsmeier et al.
patent: 5310319 (1994-05-01), Grant et al.
patent: 5402636 (1995-04-01), Mize et al.
patent: 5816776 (1998-10-01), Chambon et al.
patent: 2 541 371 (1984-08-01), None
patent: 2 707 698 (1995-01-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling the upstream end plate of a high pressure turbine by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling the upstream end plate of a high pressure turbine by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling the upstream end plate of a high pressure turbine by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211602

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.