Cooling system for electronic equipment cabinets

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S692000, C361S695000, C312S223100, C454S184000

Reexamination Certificate

active

06535382

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
The present invention is directed to air cooling systems for electronic equipment and more specifically to a plenum based system for delivering cooing air to an electronic equipment cabinet.
Over the past several decades the advantages of using computers to perform many different tasks has become clear in almost every industry. Even industries once reluctant to embrace new computing tools have been forced to adopt new business strategies that center on computing abilities. Because of this realization many companies and other entities require massive computing and data storage capabilities to support their employees, efficiently manufacture and sell products and provide services to their customers. In fact, not only do computers help businesses to be efficient, but now, most companies could not function without their computing and database capabilities. In effect, computing and database capabilities have become critical to the operations of many companies and other entities such that any disturbance in those capabilities could result in massive loss of business.
To provide the massive amount of computing and database capabilities needed, many companies locate racks of computer servers and other electronic modules in special “critical environment” computing and warehousing rooms where information technology personnel can monitor and maintain the server configurations. Hereinafter servers and electronic modules of all types will collectively be referred to as electronic modules in order to simplify this explanation. Each rack typically includes a plurality of vertically arranged (i.e., one support above another) shelving members. Each member is configured to support one or more electronic modules. The shelving members are often vertically adjustable so that the space between members can be modified to accommodate differently sized electronic modules.
Because technology is advancing quickly, maintaining servers and databases has become extremely expensive. The expense of maintaining and expanding to meet demanding computing capabilities is exacerbated as IT personnel required to maintain and upgrade such capabilities are typically highly skilled. For this reason an entire server/database “hosting” industry (e.g., web hosting) has evolved where industry members maintain massive numbers of servers and other electronic modules and effectively rent out the right to use the modules to customers (i.e., businesses). A similar industry, referred to as “co-location,” has also evolved where companies provide conditioned space for their customer's servers, data bases and the like. In both of these industries highly skilled IT personnel can use their expertise to provide services to a huge number of customers thereby spreading costs. In addition, as a customer's computing needs change, the host can accommodate the needs quickly by adding required modules and subletting additional space in the critical environment.
A cabinet is typically constructed about each rack including top and bottom walls, opposing lateral walls and front and back walls. The front and back walls are often hinged and openable to facilitate access to the modules inside the cabinet. In addition, the front wall is often transparent so that IT personnel can observe the devices inside the cabinet and determine status from various visual displays that may be provided.
Often the electronic modules placed within a rack will be replaced by other electronic modules to modify capabilities or change other important system operating parameters. For example; with the fast pace of hardware innovation servers are often obsolete after just a couple of years and therefore server swapping is common.
One problem with virtually all electronic modules, including computers and computer servers, is that, during operation, electronic modules generate heat. If module generated heat is not dissipated quickly enough, the heat can cause the module to malfunction or, when extreme, can destroy the modules.
The industry has developed several different ways in which to cool electronic modules. For example, in the case of stand alone servers, most servers include one or more fans positioned in a back wall of a server housing. The fans run whenever the server is operating to draw air from the space in front of the server over the heat generating devices inside a module housing.
In the case of critical environments, module fans alone cannot be relied upon to maintain low temperatures. Specifically, fans alone cannot be relied upon because, in a typical critical environment, there are so many heat generating modules pumping heat into the ambient that the ambient temperature in the critical environment would reach dangerous levels relatively quickly. In effect, the ambient air would not be cool enough to effectively cool the modules. Thus, in the case of critical environments, many cooling schemes call for monitoring and cooling the entire critical environment.
One common way to cool critical environments has been to raise the floor in the environment so that a space exists below the surface that supports the module cabinets. Then cooling air is pumped through floor tiles into the critical environment. Environment temperature is then monitored at various locations and the cooling air temperature and/or volume is adjusted to maintain the environment at the desired temperature. Ideally the environment temperature throughout the critical environment should be maintained at the same temperature so that if modules are swapped into or out of a cabinet the modules will always be exposed to the same optimal ambient temperature.
While identical and constant temperatures throughout the critical environment are ideal, unfortunately there are several sources of temperature irregularly in typical critical environments. For instance, in addition to providing cooling air through the raised floor, many critical environments route power and information busses there to conceal the busses and maintain unobstructed paths within the environment. One problem with placing the busses and other cables below the raised floor is that the cables and buses can block air flow to parts of the critical environment above the raised floor thus causing the ambient temperature in some parts of the critical environment to be different than in others. Cabinets (and electronic modules therein) in the warmer room areas tend to be warmer than cabinets in the cooler areas.
One other source of temperature irregularity within the critical environment is the disparate amount of heat generated by the different modules and their uses within the separate cabinets. For instance, assuming identical servers, a first cabinet including three servers that operate near full computing capacity generates more heat than a second cabinet including one server that operates at a small fraction of the server's capacity. In this case, all other things being equal, the air temperature near the first cabinet (and inside the first cabinet for that matter) would be warmer than the air temperature near the second cabinet.
Thus, despite efforts to maintain the same conditions throughout a critical environment, often the temperatures within different areas of the critical environment will vary and this variance can result in module failure or pre-mature degradation in performance.
One solution to the critical environment temperature disparity problem is to increase the temperature of the cooling air forced into the critical environment so that even the warmest area within the room is cool enough to minimize or avoid module failure. Unfortunately, IT personnel are routinely inside the critical environment during system operations to monitor and work on modules and therefore this solution is often unworkable.
Another solution to the critical environment temperature disparity problem has been to identify temperatures throughout a critical environment at

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling system for electronic equipment cabinets does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling system for electronic equipment cabinets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling system for electronic equipment cabinets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3045304

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.