Cooling system

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S694000, C361S697000, C174S016300, C165S080300, C165S104330

Reexamination Certificate

active

06795315

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the priority benefit of Taiwan application serial No. 92205393, filed on Apr. 7, 2003.
BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates to a cooling system. More particularly, the present invention relates to an interface card cooling system.
2. Description of Related Art
With the great advance in the electronics industry, the need for high-speed multi-functional computers is increasing. As the functional capacity of each computer continue to increase, the number of electronic devices must increase correspondingly. Due to the high operating speed and the increase in the number of electronic devices, a large quantity of heat is produced inside the computer casing during operation. Because the casing of most computers or the surface of most electronic devices do not have any specially installed ventilation system to carry heat away, temperature inside the computer casing will gradually increase with the period of operation. As the temperature inside the computer casing rises to a definite level, some of the operating electronic devices may fail temporarily or permanently. Similarly, the increasing operating speed of the constituent graphic chip and memory chip inside of a graphic card (a graphic processor unit) also generates a lot of heat in full operation.
To prevent the temporary or permanent failure of a graphic card due to over-heating, the graphic chip and the memory chip within the graphic card must be maintained within an operating temperature range. In general, the heat produced by the graphic chip and the memory chip can be carried away using a cooling system.
At present, the most common cooling systems for the graphic card includes the passive cooling system and the active cooling system. The passive cooling system relies on a highly conductive metallic or alloyed heat sink to carry the heat away. The heat sink comprises a cooling plate and a plurality of fins attached to the cooling plate. The cooling plate is made to contact the surface of a graphic chip through a mounting fixture so that the heat produced by the operating graphic chip is transmitted to the cooling plate and the surface of the cooling fins and subsequently dissipated to the surrounding atmosphere.
To boost the heat dissipating capacity of the passive cooling system, an active cooling system with a cooling fan installed over or on one side of the heat sink. The cooling fan provides a stream of air over the channel between the cooling fins of a heat sink. Hence, the active cooling system utilizes both conduction and convection to carry the heat away from the graphic chip. Due to the generation of vast quantities of heat in a high-speed graphic chip, the graphic chips can no longer be maintained within a normal operating temperature range through a passive cooling system alone. Therefore, an additional active cooling system must be installed on the graphic chip of a graphic card.
However, as the operating frequency of the graphic card is increased, the actual heat sources are no longer confined to the graphic chips or the memory chip. In other words, other electronic components (such as capacitor or inductance) on the graphic card can also be major sources of heat production. Thus, a conventional active cooling system can carry the heat away from the graphic chip and the memory chip but has no power to remove the heat from the other heat-generating electronic components.
SUMMARY OF INVENTION
Accordingly, one object of the present invention is to provide a cooling system for an interface card capable of removing most of the heat generated by electronic devices within the card so that these electronic devices are maintained within a normal operating temperature range. Ultimately, electrical performance of the interface card is greatly improved.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides a cooling system for an interface card. The interface card comprises a circuit board and a connection interface. The circuit board also has a circuit carrier. The connection interface is attached to one of the side edges of the carrier. The carrier furthermore comprises a front surface, a back surface and a lead-plugging section located on another side edge of the carrier. The cooling system comprises a thermal conductive housing that encloses at least a portion of the circuit carrier but exposes the lead-plugging section. Thus, a space is provided between the front surface of the circuit carrier and the thermal conductive housing. In addition, the thermal conductive housing has an air inlet and an air outlet linking up the enclosed space. An air intake fan is installed at the air inlet and an air exhaust fan is installed at the air outlet of the thermal conductive housing.
According to one embodiment of this invention, the air inlet and the air outlet are positioned over the front surface of the carrier.
According to another embodiment of this invention, the thermal conductive housing furthermore comprises an intake air guiding section and an exhaust air guiding section. The air intake guiding section is set up over the air inlet of the thermal conductive housing and the air exhaust guiding section is set up over the air outlet of the thermal conductive housing. Furthermore, the direction of air flow provided by the air intake guiding section and the direction of air flow provided by the air exhaust channel section form an included angle smaller than 180°.
According to one embodiment of this invention, the cooling system furthermore comprises a fin type heat sink heat sink. The circuit board furthermore comprises at least an electronic device set up on the front surface of the carrier. The heat sink is installed between the electronic device and the thermal conductive housing such that one side of the heat sink is in contact with the electronic device while the other side of the heat sink is in contact with the interior surface of the thermal conductive housing.
According to one embodiment of this invention, the cooling system furthermore comprises a thermal conductive buffer layer installed between the thermal conductive housing and the fin type heat sink.
According to one embodiment of this invention, the air inlet and the air outlet are positioned over the front surface of the carrier but located on each side of the heat sink.
According to one embodiment of this invention, the thermal conductive housing furthermore comprises a top cover positioned over the front surface of the carrier and a back plate covering the back surface of the carrier. Moreover, at least one side of the back plate has direct connection with a corresponding side of the top cover.
According to one embodiment of this invention, the side edge of the back plate and the corresponding side edge of the top cover are joined together through a detachable connection.
According to one embodiment of this invention, one of the side edges of the top cover has a latching hook and the corresponding side edge of the back plate has a corresponding groove for the latching hook so that the two can be latched together after the latching hook is placed inside the groove.
According to one embodiment of this invention, one of the side edges of the top cover has a groove for accommodating a latching hook and the corresponding side edge of the back plate has a corresponding latching hook so that the two can be latched together after the latching hook is placed inside the groove.
According to one embodiment of this invention, one of the side edges of the back plate has an embedding groove for accommodating one side edge of the carrier.
In brief, the cooling system of this invention comprises a thermal conductive housing that wraps around the circuit carrier and the electronic devices of an interface card and a pair of fans installed on the thermal conductive housing. The fans on the thermal conductive housing provide a continuous stream of cool air in the space between t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.