Refrigeration – Automatic control – Gas-liquid contact cooler – fluid flow
Patent
1996-04-19
1998-08-25
Sollecito, John M.
Refrigeration
Automatic control
Gas-liquid contact cooler, fluid flow
62304, 62506, 236 44B, 239 75, F28D 300
Patent
active
057972745
DESCRIPTION:
BRIEF SUMMARY
This invention relates to a method of cooling a hot body and to a body which, in use, has to be cooled with liquid coolant. A particular, but not sole, application of the invention is to a method of cooling a part of a vessel containing molten metal and to such vessels.
In pyrometallurgical processes, heat is generated during the smelting, melting or refining of the metal. The process ingredients are usually refined within a steel vessel which is lined with refractory material in order to protect the steel shell, as far as possible, from the high temperatures used in the process. Nevertheless, the shell usually becomes hot so it is beneficial to provide cooling of at least part of the shell in order that distortion is reduced and the shell material retains sufficient of its strength to operate according to the Designer's intentions.
It is now well recognised in the metallurgical industry that it is extremely dangerous to allow liquid water and liquid metal to come into close proximity to one another because, in the event of a fault occurring, the sudden expansion and vaporisation of water in contact with liquid metal can cause a dangerous explosion.
It is known from WO 89/03011 to cool a hot metal body forming part of a vessel containing molten metal by applying droplets of liquid coolant to the outer surface of the body in a controlled manner such that the volume of coolant applied in a given time period does not exceed the volume of coolant which is vaporised by contact with the hot surface in the given time period. In this document, it is disclosed that, in order to control the amount of liquid coolant applied to the outer surface of the body, one or more thermocouples are used to determine the temperature of the surface and this information is transmitted to a temperature controller remote from the body. This controller controls the supply of liquid coolant passing through one or more valves, also away from the body, to one or more sprays located adjacent to the body.
It is also known from EP-0044512-A to cool a vessel with a cooling box fitted into the wall of the vessel and the box contains a heat exchange surface onto which a cooling liquid is sprayed. The quantity of liquid sprayed onto the surface is controlled by a temperature measuring device so that a spontaneous evaporation of the cooling liquid occurs.
It will be appreciated from this description of the prior art that the provision of thermocouples on the surface to be cooled and one or more valves and a controller remote from the surface inevitably means that there are long electrical connections and coolant lines between the surface and the remote position where the valves and the controller are located.
An object of the present invention is to provide an improved method of controlling the surface temperature. The result is usually a reduction in capital cost and more sensitive control of surface temperature.
According to a first aspect of the present invention, in a method of cooling a hot body, a quantity of liquid coolant is sprayed onto a surface of the body to be cooled by one or more spray nozzles, and the volume of liquid coolant applied in a given time period is controlled so that it does not exceed the volume of liquid coolant which is vaporised by contact with the surface of the hot body in the given time period characterised in that a gaseous medium is supplied continuously to the or each spray nozzle and the liquid coolant which is atomised by the gaseous medium into droplets is supplied to the or each spray nozzle under the control of at least one valve the operation of which is brought about by the action of a non-electrical temperature responsive element in thermal contact with the surface.
It will be appreciated that, since the or each valve which controls the supply of liquid coolant to the or each spray nozzle is in turn controlled by a non-electrical temperature responsive element which is in thermal contact with the surface to be cooled, it will be clear that the valve is on, or very close to, the surface to be cooled an
REFERENCES:
patent: 3817053 (1974-06-01), Orth
patent: 4552303 (1985-11-01), Fisher et al.
Featherstone William Barry
Jackaman David Peter
Davy McKee (Stockton) Limited
Sollecito John M.
LandOfFree
Cooling of hot bodies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cooling of hot bodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling of hot bodies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-29695