Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators
Reexamination Certificate
1993-02-24
2003-04-22
Graham, Mark S. (Department: 3711)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Thermal applicators
C165S046000
Reexamination Certificate
active
06551347
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates generally to heat exchange devices for heating and/or cooling of the human body, and more particularly to a patient therapy heat exchange structure for placing against or for being worn on the human body. The heat exchange structure can be in combination with a cooperating portable device, which may be in the form of a wheeled cart, for providing heating and/or cooling liquid to the patient therapy device at a desired temperature, with or without cyclic pressurization.
U.S. Pat. No. 4,691,762 discloses a temperature control system including a heat exchanger vest and/or helmet to be worn on the human body, accompanied by a portable unit which administers cooling to a circulated liquid which passes through the heat exchange garments. The heat exchange garments pursuant to that patent were advantageously formed as Flexitherm (a trademark of Life Support Systems, Inc.), a material, fabricated of two sheets of flexible, liquid-impervious plastic material heat sealed together to form the fluid conducting channels with appropriate manifolding.
The Flexitherm heat exchange material as constituted prior to this invention had a tendency to exhibit flow constriction problems under certain circumstances. For example, in areas where the heat exchange material was subjected to relatively sharp bends, crease lines could form in the manifolds and in the fluid conducting channels themselves due to the stresses of bending the material when pressurized with flowing liquid. These stress lines or crease lines could become deep creases and shut off flow to some flow channels and through some portions of the manifolds. The problem was accentuated further by the imbalance in pressurization shrinkage between the flow channels and the manifolds. The flow channels shrink in lateral dimension when pressurized with liquid, since the flattened channels become “inflated” to a generally cylindrical configuration, drawing the structure inward laterally. Adjacent manifolds, which are generally perpendicular to the orientation of the flow channels, shrink in the perpendicular direction, but essentially do not shrink in the direction of shrinkage of the flow channels. Upon pressurization this imbalance tended to put increased stress on the manifolds, tending to form constrictions which were even more greatly accentuated when the Flexitherm heat exchange structure was formed around curves and bends on the body.
These problems limited the usefulness of the Flexitherm material for additional therapy situations which might require relatively sharp bends and flexing situations.
Co-pending application Serial No. 431,753, which was a division of application Ser. No. 250,778 (U.S. Pat. No. 4,884,304), disclosed a bedding system with liquid heating or cooling, wherein the liquid temperature control was provided by a mixing device which mixed warm liquid with cooled liquid as selected by the user, for maximum comfort. This provided for fast-response adjustment of temperature (and individual control in a dual control system) in the liquid flow channels of the bedding system, to quickly achieve the proper temperature for the particular user.
Such closed-loop mixing of heated and cooled liquids, to quickly achieve changes in temperature in a liquid-conducting flexible heat exchange device, was not generally available prior to the present invention. Conventional systems which have been in use have had only a single liquid tank, with the requirement of changing the temperature of water in the tank in order to achieve a change in temperature in a heat exchange device served by the tank. For example, heating/cooling devices of this general type have been available from Zero Cincinnati, Baxter Medical and Jobst.
It is an object of the present invention to provide an improved flexible heat exchange structure which may be used for thermal therapy on a patient or for other body cooling purposes, and this may be in conjunction with a portable source of heated and/or cooled liquid, and optionally air pressure, connected to the heat exchange structure or garment by fluid lines, for achieving very fast response in temperature adjustment for the patient thermal therapy.
SUMMARY OF THE INVENTION
In accordance with one embodiment of the invention, a flexible heat exchange structure, which may be used for heating and/or cooling of the human body, particularly for medical purposes but also for body thermal control in extreme environments, has a plurality of fluid conducting channels for carrying a heat exchange liquid. The channels are formed between a pair of flexible sheets of material, substantially impervious to the heat exchange liquid, with the sheets sealed together along generally parallel lines to form the liquid conducting channels between the lines. At the ends of the series of liquid conducting channels are manifolds for conducting the heat transfer liquid into the series of channels and out of the series of channels.
The pair of flexible sheets are sealed together around the series of liquid conducting channels along peripheral seal lines, spaced away from the ends of the channels in manifold portions so as to define the manifolds for inflow and outflow of liquid. In accordance with the invention the manifold portions of the seal lines have portions formed in a convoluted or undulating pattern. This pattern tends to discourage pinching of the fluid manifolds when the flexible heat exchange structure is subjected to bending or flexure as when worn on the human body. Further, the convoluted or undulating manifold seal lines tend to reduce buckling stress in the manifolds on pressurization of the heat exchange structure, by balancing pressurization shrinkage at the manifold portions of the seal lines with pressurization shrinkage laterally among the liquid conducting channels.
The sheets of flexible material preferably are heat sealed to form the seal lines, with the heat seals in a preferred embodiment being approximately 0.1″ wide. Between the heat seal lines the fluid conducting channels may be approximately 0.15″ wide when in flattened configuration. The convolutions in the manifold seal lines may have a width of about 0.5′, forming a relationship discussed further below.
The convoluted or undulating pattern of seal lines can comprise a pattern of generally curved undulations, the undulations each having a width which is selected to shrink, upon pressurization of the heat exchange structure with fluid, to the same degree that the liquid conducting channels on the other side of the manifold shrink in width. This avoids the differential pressurization shrinkage mentioned above. The undulations may be generally semi-circular in shape, or U-shaped, or they may V-shaped, with the open side of the U or V shape facing toward the series of liquid conducting channels on the other side of the manifold. In a preferred embodiment the apices of the generally curved undulations (“generally curved” includes V-shaped undulations), are positioned to be oriented generally toward the center of the open end of every second flow channel on the other side of the manifold, and generally equidistant from the two heat seal ends of the respective flow channels.
In a further preferred embodiment, the flow channels or capillaries of the heat exchange structure, while still being generally linear in an overall sense, are formed by seal lines in zig-zag patterns, the seal lines being regular repeating zig-zag lines generally equally spaced apart to form the liquid conducting channels between them. This zig-zag pattern of the channels tends to discourage pinching of the channels when the flexible heat exchange structure is subjected to bending or flexure, particularly around relatively tight bends or curves, as when worn on the human body.
In a further implementation of the invention a third flexible sheet of material is secured to the two-ply material, connected by sealed connection to one side of the fluid channel structure. This forms an air envelope between one of the pair of flexible s
Graham Mark S.
Life Enhancement Technologies, Inc.
LandOfFree
Cooling/heating system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cooling/heating system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling/heating system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3080109