Refrigeration – Combined
Reexamination Certificate
2001-08-20
2003-03-18
Doerrler, William C. (Department: 3744)
Refrigeration
Combined
C062S259100, C062S302000, C062S263000, C062S261000, C062S448000
Reexamination Certificate
active
06532757
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a cooling device for installation in a furniture niche of a kitchen unit or the like. The device includes at least one thermally insulating cooling space, which can be sealed by a door, and a base disposed therebeneath. The base serves to accept assemblies such as compressors, ventilators, and so on, and is force ventilated by the ventilator by way of at least one air inlet in the front region at the door side. To achieve an optimal volume of cooling space in built-in cooling devices, the prior art equips them with what is referred to as a base, within which the condenser/liquifier and the ventilator are disposed. As a result, these assemblies reduce the volume of the cooling space only marginally, if at all.
U.S. Pat. No. 3,142,162 to Herndon et al. describes such a cooling device. In the Herndon cooling device, a base is provided under the cooling space, the back of which accepts a compressor, a condenser, and a ventilator that force ventilates these assemblies. The ventilator supplies cool air to the assemblies that must be cooled by way of an air supply vent in the front region at the door side and an adjoining air inlet channel. The ventilator removes the hot air through an exhaust channel at its mouth and an exhaust vent in the front region at the door side. To prevent a short, which substantially degrades the cooling of the assemblies, a separating wall is provided in the base, which extends from the openings in the door-side front region into the rear region serving for receiving the assemblies. Thus, the wiring of the base is subdivided into two sections. However, the subdivision of the base interior substantially limits the possibility for configuring the assemblies suitably for cooling. In such regard, the condenser must be positioned on the air supply side to be able to cool it sufficiently to achieve an acceptable level of effectiveness for the cooling device. A consequence of such a function-specific configuration is that the condenser occupies a width of the air supply section to limit the area of the heat exchange surface of the condenser, particularly when the height of the base is fixed to a maximum value for optimizing the cooling space volume. Another consequence of the electrical subdivision is that the amount of cool air, which is necessary for cooling the assemblies, is only available when the air is moved along the channels at a relatively high velocity. Consequently, floating particles, which are commonly present in the standing area of a cooling device, are drawn into the base region and settle on the surface of the condenser (which is wound into several layers), causing the heat exchange characteristics to deteriorate substantially over the service life of the cooling device. Such deterioration results in a notable reduction of the effectiveness of the device. An additional reduction of the effectiveness derives from configuring the supply and exhaust openings immediately adjacent one another, because, with such a configuration, hot air that exits at the exhaust opening cannot be prevented from being drawn in again through the supply opening, at least to some extent, so that the preheated air is used to cool the condenser.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a cooling device for installation in a furniture niche that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that provides at least one exhaust aperture in the back region of one of the walls of the base that is averted from the door.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a cooling device for installation in a furniture niche, including at least one thermally insulating container defining a cooling space and having a door for sealing the cooling space, and a cooling apparatus including a compressor, a condenser, and a ventilator. The base has at least two sidewalls, a front region disposed in a vicinity of the door, a rear region, at least one air supply aperture disposed at the front region, and an exhaust aperture disposed at the rear region. The base houses the compressor, the condenser, and the ventilator. The base is disposed below the cooling space. The base is force ventilated by the ventilator through the at least one air supply aperture and the exhaust aperture. The exhaust aperture is disposed in at least one of the sidewalls. Preferably, the cooling device is installed in a furniture niche of a kitchen unit.
On one hand, the spatial separation of the air supply aperture from the exhaust aperture prevents the cool air that is drawn in by way of the supply aperture from mixing with the exhaust air that has already been heated in the process of cooling of the assemblies, and thereby noticeably improves the cooling of the assemblies and also the effectiveness of the device. Furthermore, because the supply and exhaust apertures are spatially separated, it is possible to forgo a channel formation within the interior of the base. Thus, the device assemblies are configurable in the base for optimum effectiveness. Moreover, because the electrical subdividing in the interior of the base is forgone, a larger air supply cross-section is possible, and the cool air that is required for sufficient cooling of the device assemblies can be transported at a low velocity. The low velocity produces a substantially reduced drag of particles into the interior of the base, which results in a substantially lower degree of contamination of the interior of the base and, thus, of the condenser. Accordingly, the heat exchange characteristics of the condenser are maintained nearly over the entire service life of the cooling device. It is particularly expedient when the exhaust aperture is disposed sitting in the rear region at one of the walls of the base, as provided in a preferred exemplifying embodiment of the invention.
According to a separate preferred embodiment of the invention, the exhaust aperture is disposed at least at one of the side walls of the base. With such a configuration of the exhaust aperture, it is already sufficiently spatially separated from the supply aperture so that a heating of the cool air streaming in through the supply aperture by the hot exhaust air that is removed from the exhaust aperture is at least substantially prevented to the benefit of a substantial improvement of the effectiveness of the cooling system. Additionally, an air throughput through the exhaust aperture, which is sufficient for cooling the assemblies, is easily achievable.
In accordance with another feature of the invention, there are at least two exhaust apertures, the sidewalls each have a sidewall rear region in a vicinity of the rear region of the base, and at least one of the exhaust apertures is disposed in the sidewall rear region of one of the sidewalls.
At least one respective exhaust aperture is provided at the sidewalls in the back region of the base. As such, a particularly minimal particle drag into the base space is achieved. Furthermore, the exhaust removal is substantially faster given constant ventilator power. The exhaust apertures are disposed particularly expediently with respect to a spatial separation of the supply and exhaust apertures when, in accordance with a further feature of the invention, the exhaust apertures are disposed at the sidewalls of the base immediately adjacent to its back wall.
In accordance with an added feature of the invention, at least one exhaust aperture is disposed at the back side of the base. By virtue of the configuration of the exhaust aperture, the hot air is reliably prevented from mixing into the cool air serving for the cooling of the assemblies, thereby increasing the effectiveness of the cooling system even further.
In accordance with an additional feature of the invention, the front region of the base has a front wall defining the at least one supply aperture, the front wall has a width, and the supply aperture extends
Hirath Jürgen
Holzer Stefan
Kentner Wolfgang
BSH Bosch und Siemens Haus-geraete GmbH
Doerrler William C.
Greenberg Laurence A.
Locher Ralph E.
Shulman Mark
LandOfFree
Cooling device for installation in a furniture niche does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cooling device for installation in a furniture niche, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling device for installation in a furniture niche will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3074154