Cooling assembly for a heat producing assembly

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S890030, C165S080300, C257S719000, C361S719000

Reexamination Certificate

active

06667882

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to electronic devices. More particularly, the invention pertains to an assembly for cooling a heat generating component in an electronic device.
BACKGROUND OF THE INVENTION
The components (e.g., processors, micro-controllers, high speed video cards, disk drives, semi-conductor devices, etc.) of an electronic system are generally known to generate rather significant amounts of heat. It has been found that the performance and reliability of the components typically deteriorate (e.g., crash or lock up the entire computer system) as the to temperature of the components increase. Additionally, the program being run by the processor may contain errors and memory errors may also exist with increased component temperatures. Electronic systems are thus typically equipped with a mechanism (e.g., a fan) attached to a housing of the electronic system to cool the components. Although these types of mechanisms have been relatively effective in cooling the components of certain types of electronic systems, they have been found to be relatively insufficient to cool the faster and more powerful components of today's electronic systems.
With the advent of more powerful processors which generate greater amounts of heat, the possibility that the components of electronic systems will overheat has drastically increased. One solution to the overheating problem has been to directly cool the components themselves by placing a heat pipe in thermal connection to the components. In addition, fans have been integrally attached to the heat pipe to blow heated air away from the heat pipe to reduce the temperature of the heat pipe and thus the temperature of the heat generating component.
Conventional heat pipes, however, often suffer from a variety of drawbacks and disadvantages. For instance, it is generally known to attach heat pipes to heat generating components with adhesive. Although the use of adhesive affords a relatively secure connection between the heat pipe and the component and does not require a relatively large amount of space around the component, one associated with its use is the difficulty involved with removal of the heat pipe from the component. For example, attempts to remove the heat pipe from the component may result in damage of either or both the heat pipe and the component. Thus, in certain instances, e.g., when it is undesirable to replace both the heat pipe and the heat generating component, it has been found to be disadvantageous to attach a heat pipe to a component with adhesive.
It is also generally known to position heat pipes in contact with components by employing mechanical fasteners. The mechanical fasteners typically require a tool for insertion or removal thereof (e.g., clippings, screws, etc.). These assemblies typically possess a plurality of mechanical fasteners that attach to mating sections of a substrate (e.g., a motherboard). One problem associated with these types of assemblies is that a relatively large amount of space around a heat generating component and a heat pipe may be required to provide adequate access to install and remove the mechanical fasteners. Additionally, a tool (e.g., a screwdriver or the like) may typically be required for installation and removal of the heat pipe.
Further disadvantages are associated with the fact that fans are typically integrally attached to the heat pipes in conventional heat pipes. That is, in known heat pipes, it may be relatively difficult to detach a fan from a heat pipe. For instance, conventional heat pipe and fan assemblies are typically constructed as integral assemblies. Thus, the fans may not be detached from the heat pipe without causing some type of damage to either the fan or the heat pipe. Additionally, a tool (e.g., screwdriver or the like) may be required to detach the fan from the heat pipe.
SUMMARY OF THE INVENTION
In accordance with an embodiment of the present invention, a cooling assembly for dissipating heat produced in a heat generating component of an electronic system is provided. The cooling assembly includes a shroud assembly, a heat dissipating device removably housed within the shroud assembly, a fan assembly removably housed within the shroud assembly, and a plurality of mounting assemblies slidably attached to the shroud assembly and configured to removably secure the cooling assembly in thermal connection to the heat generating component.
According to another embodiment, the present invention pertains to a system for cooling a heat generating component. The cooling system includes a cooling means for cooling the heat generating component and a connecting means for detachably connecting the cooling means to a substrate supporting the heat generating component.
According to yet another embodiment, the present invention pertains to a method for cooling a heat generating component of an electronic system. According to the method, a heat dissipating device is inserted within a first section of a shroud assembly. The heat dissipating device is supported within the first section of the shroud assembly with a bottom frame of the shroud assembly. A fan assembly is inserted into a second section of the shroud assembly and the shroud assembly is positioned over the heat generating component such that a bottom surface of the heat dissipating device is positioned substantially directly over the heat generating component. The shroud assembly is fastened over the heat generating component by a plurality of latches which are maneuvered onto a plurality of hooks positioned adjacent to the heat generating component.


REFERENCES:
patent: 5630469 (1997-05-01), Butterbaugh et al.
patent: 5841633 (1998-11-01), Huang
patent: 5854738 (1998-12-01), Bowler
patent: 6259375 (2001-07-01), Andras
patent: 6269001 (2001-07-01), Matteson et al.
patent: 6414848 (2002-07-01), Chen
patent: 6435889 (2002-08-01), Vinson et al.
patent: 6477051 (2002-11-01), Barsun
patent: 6529375 (2003-03-01), Miyahara et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling assembly for a heat producing assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling assembly for a heat producing assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling assembly for a heat producing assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.